# app.py import gradio as gr from bs4 import BeautifulSoup from sentence_transformers import SentenceTransformer import faiss import numpy as np import asyncio import aiohttp import re import base64 import logging import os import sys import time # Import OpenAI library import openai # Set up logging to output to the console logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Create a console handler console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.INFO) # Create a formatter and set it for the handler formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s') console_handler.setFormatter(formatter) # Add the handler to the logger logger.addHandler(console_handler) # Initialize models and variables logger.info("Initializing models and variables") embedding_model = SentenceTransformer('all-MiniLM-L6-v2') faiss_index = None bookmarks = [] fetch_cache = {} # Define the categories CATEGORIES = [ "Social Media", "News and Media", "Education and Learning", "Entertainment", "Shopping and E-commerce", "Finance and Banking", "Technology", "Health and Fitness", "Travel and Tourism", "Food and Recipes", "Sports", "Arts and Culture", "Government and Politics", "Business and Economy", "Science and Research", "Personal Blogs and Journals", "Job Search and Careers", "Music and Audio", "Videos and Movies", "Reference and Knowledge Bases", "Dead Link", "Uncategorized", ] # Set up Groq Cloud API key and base URL GROQ_API_KEY = os.getenv('GROQ_API_KEY') if not GROQ_API_KEY: logger.error("GROQ_API_KEY environment variable not set.") # Set OpenAI API key and base URL to use Groq Cloud API openai.api_key = GROQ_API_KEY openai.api_base = "https://api.groq.com/openai/v1" def extract_retry_after(error_message): """ Extract the retry-after time from the rate limit error message. """ match = re.search(r'Please try again in (\d+\.?\d*)s', error_message) if match: return float(match.group(1)) + 1 # Add a buffer of 1 second else: return 5 # Default retry after 5 seconds def exponential_backoff(retries): return min(60, (2 ** retries)) # Cap the wait time at 60 seconds def extract_main_content(soup): """ Extract the main content from a webpage while filtering out boilerplate content. """ if not soup: return "" # Remove unwanted elements for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']): element.decompose() # Extract text from

tags p_tags = soup.find_all('p') if p_tags: content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags]) else: # Fallback to body content content = soup.get_text(separator=' ', strip=True) # Clean up the text content = re.sub(r'\s+', ' ', content) # Remove multiple spaces # Truncate content to a reasonable length (e.g., 1500 words) words = content.split() if len(words) > 1500: content = ' '.join(words[:1500]) return content def get_page_metadata(soup): """ Extract metadata from the webpage including title, description, and keywords. """ metadata = { 'title': '', 'description': '', 'keywords': '' } if not soup: return metadata # Get title title_tag = soup.find('title') if title_tag and title_tag.string: metadata['title'] = title_tag.string.strip() # Get meta description meta_desc = ( soup.find('meta', attrs={'name': 'description'}) or soup.find('meta', attrs={'property': 'og:description'}) or soup.find('meta', attrs={'name': 'twitter:description'}) ) if meta_desc: metadata['description'] = meta_desc.get('content', '').strip() # Get meta keywords meta_keywords = soup.find('meta', attrs={'name': 'keywords'}) if meta_keywords: metadata['keywords'] = meta_keywords.get('content', '').strip() # Get OG title if main title is empty if not metadata['title']: og_title = soup.find('meta', attrs={'property': 'og:title'}) if og_title: metadata['title'] = og_title.get('content', '').strip() return metadata async def generate_summary_async(bookmark): async with llm_semaphore: generate_summary(bookmark) def generate_summary(bookmark): """ Generate a concise summary for a bookmark using available content and LLM via the Groq Cloud API. """ logger.info(f"Generating summary for bookmark: {bookmark.get('url')}") try: html_content = bookmark.get('html_content', '') # Get the HTML soup object from the bookmark soup = BeautifulSoup(html_content, 'html.parser') # Extract metadata and main content metadata = get_page_metadata(soup) main_content = extract_main_content(soup) # Prepare content for the prompt content_parts = [] if metadata['title']: content_parts.append(f"Title: {metadata['title']}") if metadata['description']: content_parts.append(f"Description: {metadata['description']}") if metadata['keywords']: content_parts.append(f"Keywords: {metadata['keywords']}") if main_content: content_parts.append(f"Main Content: {main_content}") content_text = '\n'.join(content_parts) # Detect insufficient or erroneous content error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic'] if not content_text or len(content_text.split()) < 50: use_prior_knowledge = True logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.") elif any(keyword.lower() in content_text.lower() for keyword in error_keywords): use_prior_knowledge = True logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.") else: use_prior_knowledge = False if use_prior_knowledge: # Construct prompt to use prior knowledge prompt = f""" You are a knowledgeable assistant. The user provided a URL: {bookmark.get('url')} Please provide a concise summary in **no more than two sentences** about this website based on your knowledge. Focus on: - The main purpose or topic of the website. - Key information or features. Be concise and objective. """ else: # Construct the prompt with the extracted content prompt = f""" You are a helpful assistant that creates concise webpage summaries. Analyze the following webpage content: {content_text} Provide a concise summary in **no more than two sentences** focusing on: - The main purpose or topic of the page. - Key information or features. Be concise and objective. """ # Call the LLM via Groq Cloud API retries = 0 max_retries = 5 while retries <= max_retries: try: response = openai.ChatCompletion.create( model='llama-3.1-70b-versatile', messages=[ {"role": "user", "content": prompt} ], max_tokens=100, # Reduced max tokens temperature=0.5, ) break # Exit loop if successful except openai.error.RateLimitError as e: retry_after = extract_retry_after(str(e)) or exponential_backoff(retries) logger.warning(f"Rate limit exceeded. Retrying after {retry_after} seconds.") time.sleep(retry_after) retries += 1 except Exception as e: logger.error(f"Error generating summary: {e}", exc_info=True) bookmark['summary'] = 'No summary available.' return bookmark summary = response['choices'][0]['message']['content'].strip() if not summary: raise ValueError("Empty summary received from the model.") logger.info("Successfully generated LLM summary") bookmark['summary'] = summary return bookmark except Exception as e: logger.error(f"Error generating summary: {e}", exc_info=True) bookmark['summary'] = 'No summary available.' return bookmark async def assign_category_async(bookmark): async with llm_semaphore: assign_category(bookmark) def assign_category(bookmark): """ Assign a category to a bookmark using the LLM based on its summary via the Groq Cloud API. """ if bookmark.get('dead_link'): bookmark['category'] = 'Dead Link' logger.info(f"Assigned category 'Dead Link' to bookmark: {bookmark.get('url')}") return bookmark summary = bookmark.get('summary', '') if not summary: bookmark['category'] = 'Uncategorized' return bookmark # Prepare the prompt categories_str = ', '.join([f'"{cat}"' for cat in CATEGORIES if cat != 'Dead Link']) prompt = f""" You are a helpful assistant that categorizes webpages. Based on the following summary, assign the most appropriate category from the list below. Summary: {summary} Categories: {categories_str} Respond with only the category name. """ retries = 0 max_retries = 5 while retries <= max_retries: try: response = openai.ChatCompletion.create( model='llama-3.1-70b-versatile', messages=[ {"role": "user", "content": prompt} ], max_tokens=10, temperature=0, ) break # Exit loop if successful except openai.error.RateLimitError as e: retry_after = extract_retry_after(str(e)) or exponential_backoff(retries) logger.warning(f"Rate limit exceeded. Retrying after {retry_after} seconds.") time.sleep(retry_after) retries += 1 except Exception as e: logger.error(f"Error assigning category: {e}", exc_info=True) bookmark['category'] = 'Uncategorized' return bookmark category = response['choices'][0]['message']['content'].strip().strip('"') # Validate the category if category in CATEGORIES: bookmark['category'] = category logger.info(f"Assigned category '{category}' to bookmark: {bookmark.get('url')}") else: bookmark['category'] = 'Uncategorized' logger.warning(f"Invalid category '{category}' returned by LLM for bookmark: {bookmark.get('url')}") return bookmark def parse_bookmarks(file_content): """ Parse bookmarks from HTML file. """ logger.info("Parsing bookmarks") try: soup = BeautifulSoup(file_content, 'html.parser') extracted_bookmarks = [] for link in soup.find_all('a'): url = link.get('href') title = link.text.strip() if url and title: extracted_bookmarks.append({'url': url, 'title': title}) logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks") return extracted_bookmarks except Exception as e: logger.error("Error parsing bookmarks: %s", e, exc_info=True) raise async def fetch_url_info(session, bookmark): """ Fetch information about a URL asynchronously. """ url = bookmark['url'] if url in fetch_cache: bookmark.update(fetch_cache[url]) return bookmark max_retries = 0 # No retries retries = 0 timeout_duration = 5 # Reduced timeout while retries <= max_retries: try: logger.info(f"Fetching URL info for: {url} (Attempt {retries + 1})") headers = { 'User-Agent': 'Mozilla/5.0', 'Accept-Language': 'en-US,en;q=0.9', } async with session.get(url, timeout=timeout_duration, headers=headers, ssl=False, allow_redirects=True) as response: bookmark['etag'] = response.headers.get('ETag', 'N/A') bookmark['status_code'] = response.status content = await response.text() logger.info(f"Fetched content length for {url}: {len(content)} characters") # Handle status codes if response.status >= 500: # Server error, consider as dead link bookmark['dead_link'] = True bookmark['description'] = '' bookmark['html_content'] = '' logger.warning(f"Dead link detected: {url} with status {response.status}") else: bookmark['dead_link'] = False bookmark['html_content'] = content bookmark['description'] = '' logger.info(f"Fetched information for {url}") break # Exit loop if successful except asyncio.exceptions.TimeoutError: bookmark['dead_link'] = False # Mark as 'Unknown' instead of 'Dead' bookmark['etag'] = 'N/A' bookmark['status_code'] = 'Timeout' bookmark['description'] = '' bookmark['html_content'] = '' bookmark['slow_link'] = True # Custom flag to indicate slow response logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.") break # Exit loop after timeout except Exception as e: bookmark['dead_link'] = True bookmark['etag'] = 'N/A' bookmark['status_code'] = 'Error' bookmark['description'] = '' bookmark['html_content'] = '' logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True) break finally: fetch_cache[url] = { 'etag': bookmark.get('etag'), 'status_code': bookmark.get('status_code'), 'dead_link': bookmark.get('dead_link'), 'description': bookmark.get('description'), 'html_content': bookmark.get('html_content', ''), 'slow_link': bookmark.get('slow_link', False), } return bookmark async def process_bookmarks_async(bookmarks_list): """ Fetch all bookmarks asynchronously. """ logger.info("Processing bookmarks asynchronously") try: connector = aiohttp.TCPConnector(limit=10) # Increase limit if necessary timeout = aiohttp.ClientTimeout(total=60) # Set timeout async with aiohttp.ClientSession(connector=connector, timeout=timeout) as session: tasks = [] for bookmark in bookmarks_list: task = asyncio.ensure_future(fetch_url_info(session, bookmark)) tasks.append(task) await asyncio.gather(*tasks) logger.info("Completed processing bookmarks asynchronously") except Exception as e: logger.error(f"Error in asynchronous processing of bookmarks: {e}", exc_info=True) raise async def process_bookmarks_llm(bookmarks_list): """ Process bookmarks asynchronously for LLM API calls. """ logger.info("Processing bookmarks with LLM asynchronously") tasks = [] for bookmark in bookmarks_list: tasks.append(generate_summary_async(bookmark)) tasks.append(assign_category_async(bookmark)) await asyncio.gather(*tasks) logger.info("Completed LLM processing of bookmarks") def vectorize_and_index(bookmarks_list): """ Create vector embeddings for bookmarks and build FAISS index with ID mapping. """ logger.info("Vectorizing summaries and building FAISS index") try: summaries = [bookmark['summary'] for bookmark in bookmarks_list] embeddings = embedding_model.encode(summaries) dimension = embeddings.shape[1] index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension)) # Assign unique IDs to each bookmark ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64) index.add_with_ids(np.array(embeddings).astype('float32'), ids) logger.info("FAISS index built successfully with IDs") return index except Exception as e: logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True) raise def display_bookmarks(): """ Generate HTML display for bookmarks. """ logger.info("Generating HTML display for bookmarks") cards = '' for i, bookmark in enumerate(bookmarks): index = i + 1 if bookmark.get('dead_link'): status = "❌ Dead Link" card_style = "border: 2px solid var(--error-color);" text_style = "color: var(--error-color);" elif bookmark.get('slow_link'): status = "⏳ Slow Response" card_style = "border: 2px solid orange;" text_style = "color: orange;" else: status = "✅ Active" card_style = "border: 2px solid var(--success-color);" text_style = "color: var(--text-color);" title = bookmark['title'] url = bookmark['url'] etag = bookmark.get('etag', 'N/A') summary = bookmark.get('summary', '') category = bookmark.get('category', 'Uncategorized') # Escape HTML content to prevent XSS attacks from html import escape title = escape(title) url = escape(url) summary = escape(summary) category = escape(category) card_html = f'''

{index}. {title} {status}

Category: {category}

URL: {url}

ETag: {etag}

Summary: {summary}

''' cards += card_html logger.info("HTML display generated") return cards def process_uploaded_file(file): """ Process the uploaded bookmarks file. """ global bookmarks, faiss_index logger.info("Processing uploaded file") if file is None: logger.warning("No file uploaded") return "Please upload a bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks() try: file_content = file.decode('utf-8') except UnicodeDecodeError as e: logger.error(f"Error decoding the file: {e}", exc_info=True) return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(choices=[]), display_bookmarks() try: bookmarks = parse_bookmarks(file_content) except Exception as e: logger.error(f"Error parsing bookmarks: {e}", exc_info=True) return "Error parsing the bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks() if not bookmarks: logger.warning("No bookmarks found in the uploaded file") return "No bookmarks found in the uploaded file.", '', gr.update(choices=[]), display_bookmarks() # Assign unique IDs to bookmarks for idx, bookmark in enumerate(bookmarks): bookmark['id'] = idx # Asynchronously fetch bookmark info try: asyncio.run(process_bookmarks_async(bookmarks)) except Exception as e: logger.error(f"Error processing bookmarks asynchronously: {e}", exc_info=True) return "Error processing bookmarks.", '', gr.update(choices=[]), display_bookmarks() # Asynchronously process bookmarks with LLM try: asyncio.run(process_bookmarks_llm(bookmarks)) except Exception as e: logger.error(f"Error processing bookmarks with LLM: {e}", exc_info=True) return "Error processing bookmarks with LLM.", '', gr.update(choices=[]), display_bookmarks() try: faiss_index = vectorize_and_index(bookmarks) except Exception as e: logger.error(f"Error building FAISS index: {e}", exc_info=True) return "Error building search index.", '', gr.update(choices=[]), display_bookmarks() message = f"✅ Successfully processed {len(bookmarks)} bookmarks." logger.info(message) # Generate displays and updates bookmark_html = display_bookmarks() choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)] return message, bookmark_html, gr.update(choices=choices), bookmark_html # The rest of the code remains unchanged (e.g., delete_selected_bookmarks, edit_selected_bookmarks_category, etc.) # Build and launch the Gradio app def build_app(): """ Build and launch the Gradio app. """ try: logger.info("Building Gradio app") with gr.Blocks(css="app.css") as demo: # General Overview gr.Markdown(""" # 📚 SmartMarks - AI Browser Bookmarks Manager Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly. --- ## 🚀 **How to Use SmartMarks** SmartMarks is divided into three main sections: 1. **📂 Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you. 2. **💬 Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly. 3. **🛠️ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease. """) # Upload and Process Bookmarks Tab with gr.Tab("Upload and Process Bookmarks"): gr.Markdown(""" ## 📂 **Upload and Process Bookmarks** ### 📝 **Steps:** 1. Click on the "Upload Bookmarks HTML File" button 2. Select your bookmarks file 3. Click "Process Bookmarks" to analyze and organize your bookmarks """) upload = gr.File(label="📁 Upload Bookmarks HTML File", type='binary') process_button = gr.Button("⚙️ Process Bookmarks") output_text = gr.Textbox(label="✅ Output", interactive=False) bookmark_display = gr.HTML(label="📄 Processed Bookmarks") # Chat with Bookmarks Tab with gr.Tab("Chat with Bookmarks"): gr.Markdown(""" ## 💬 **Chat with Bookmarks** Ask questions about your bookmarks and get relevant results. """) user_input = gr.Textbox( label="✍️ Ask about your bookmarks", placeholder="e.g., Do I have any bookmarks about AI?" ) chat_button = gr.Button("📨 Send") chat_output = gr.Textbox(label="💬 Response", interactive=False) # Manage Bookmarks Tab with gr.Tab("Manage Bookmarks"): gr.Markdown(""" ## 🛠️ **Manage Bookmarks** Select bookmarks to delete or edit their categories. """) manage_output = gr.Textbox(label="🔄 Status", interactive=False) bookmark_selector = gr.CheckboxGroup( label="✅ Select Bookmarks", choices=[] ) new_category = gr.Dropdown( label="🆕 New Category", choices=CATEGORIES, value="Uncategorized" ) bookmark_display_manage = gr.HTML(label="📄 Bookmarks") with gr.Row(): delete_button = gr.Button("🗑️ Delete Selected") edit_category_button = gr.Button("✏️ Edit Category") export_button = gr.Button("💾 Export") download_link = gr.HTML(label="📥 Download") # Set up event handlers process_button.click( process_uploaded_file, inputs=upload, outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage] ) chat_button.click( chatbot_response, inputs=user_input, outputs=chat_output ) delete_button.click( delete_selected_bookmarks, inputs=bookmark_selector, outputs=[manage_output, bookmark_selector, bookmark_display_manage] ) edit_category_button.click( edit_selected_bookmarks_category, inputs=[bookmark_selector, new_category], outputs=[manage_output, bookmark_selector, bookmark_display_manage] ) export_button.click( export_bookmarks, outputs=download_link ) logger.info("Launching Gradio app") demo.launch(debug=True) except Exception as e: logger.error(f"Error building the app: {e}", exc_info=True) print(f"Error building the app: {e}") if __name__ == "__main__": # Define a semaphore to limit concurrent LLM API calls llm_semaphore = asyncio.Semaphore(3) # Adjust based on allowed concurrency build_app()