# app.py import gradio as gr from bs4 import BeautifulSoup from sentence_transformers import SentenceTransformer import faiss import numpy as np import requests import time import re import base64 import logging import os import sys import concurrent.futures from concurrent.futures import ThreadPoolExecutor import threading # Import OpenAI library import openai # Set up logging to output to the console logger = logging.getLogger(__name__) logger.setLevel(logging.INFO) # Create a console handler console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(logging.INFO) # Create a formatter and set it for the handler formatter = logging.Formatter('%(asctime)s %(levelname)s %(name)s %(message)s') console_handler.setFormatter(formatter) # Add the handler to the logger logger.addHandler(console_handler) # Initialize models and variables logger.info("Initializing models and variables") embedding_model = SentenceTransformer('all-MiniLM-L6-v2') faiss_index = None bookmarks = [] fetch_cache = {} # Lock for thread-safe operations lock = threading.Lock() # Define the categories CATEGORIES = [ "Social Media", "News and Media", "Education and Learning", "Entertainment", "Shopping and E-commerce", "Finance and Banking", "Technology", "Health and Fitness", "Travel and Tourism", "Food and Recipes", "Sports", "Arts and Culture", "Government and Politics", "Business and Economy", "Science and Research", "Personal Blogs and Journals", "Job Search and Careers", "Music and Audio", "Videos and Movies", "Reference and Knowledge Bases", "Dead Link", "Uncategorized", ] # Set up Groq Cloud API key and base URL GROQ_API_KEY = os.getenv('GROQ_API_KEY') if not GROQ_API_KEY: logger.error("GROQ_API_KEY environment variable not set.") openai.api_key = GROQ_API_KEY openai.api_base = "https://api.groq.com/openai/v1" def extract_main_content(soup): """ Extract the main content from a webpage while filtering out boilerplate content. """ if not soup: return "" # Remove unwanted elements for element in soup(['script', 'style', 'header', 'footer', 'nav', 'aside', 'form', 'noscript']): element.decompose() # Extract text from

tags p_tags = soup.find_all('p') if p_tags: content = ' '.join([p.get_text(strip=True, separator=' ') for p in p_tags]) else: # Fallback to body content content = soup.get_text(separator=' ', strip=True) # Clean up the text content = re.sub(r'\s+', ' ', content) # Remove multiple spaces # Truncate content to a reasonable length (e.g., 1500 words) words = content.split() if len(words) > 1500: content = ' '.join(words[:1500]) return content def get_page_metadata(soup): """ Extract metadata from the webpage including title, description, and keywords. """ metadata = { 'title': '', 'description': '', 'keywords': '' } if not soup: return metadata # Get title title_tag = soup.find('title') if title_tag and title_tag.string: metadata['title'] = title_tag.string.strip() # Get meta description meta_desc = ( soup.find('meta', attrs={'name': 'description'}) or soup.find('meta', attrs={'property': 'og:description'}) or soup.find('meta', attrs={'name': 'twitter:description'}) ) if meta_desc: metadata['description'] = meta_desc.get('content', '').strip() # Get meta keywords meta_keywords = soup.find('meta', attrs={'name': 'keywords'}) if meta_keywords: metadata['keywords'] = meta_keywords.get('content', '').strip() # Get OG title if main title is empty if not metadata['title']: og_title = soup.find('meta', attrs={'property': 'og:title'}) if og_title: metadata['title'] = og_title.get('content', '').strip() return metadata def generate_summary_and_assign_category(bookmark): """ Generate a concise summary and assign a category using a single LLM call. """ logger.info(f"Generating summary and assigning category for bookmark: {bookmark.get('url')}") max_retries = 3 retry_count = 0 while retry_count < max_retries: try: html_content = bookmark.get('html_content', '') # Get the HTML soup object from the bookmark soup = BeautifulSoup(html_content, 'html.parser') # Extract metadata and main content metadata = get_page_metadata(soup) main_content = extract_main_content(soup) # Prepare content for the prompt content_parts = [] if metadata['title']: content_parts.append(f"Title: {metadata['title']}") if metadata['description']: content_parts.append(f"Description: {metadata['description']}") if metadata['keywords']: content_parts.append(f"Keywords: {metadata['keywords']}") if main_content: content_parts.append(f"Main Content: {main_content}") content_text = '\n'.join(content_parts) # Detect insufficient or erroneous content error_keywords = ['Access Denied', 'Security Check', 'Cloudflare', 'captcha', 'unusual traffic'] if not content_text or len(content_text.split()) < 50: use_prior_knowledge = True logger.info(f"Content for {bookmark.get('url')} is insufficient. Instructing LLM to use prior knowledge.") elif any(keyword.lower() in content_text.lower() for keyword in error_keywords): use_prior_knowledge = True logger.info(f"Content for {bookmark.get('url')} contains error messages. Instructing LLM to use prior knowledge.") else: use_prior_knowledge = False # Shortened prompts if use_prior_knowledge: prompt = f""" You are a knowledgeable assistant with up-to-date information as of 2023. URL: {bookmark.get('url')} Provide: 1. A concise summary (max two sentences) about this website. 2. Assign the most appropriate category from the list below. Categories: {', '.join([f'"{cat}"' for cat in CATEGORIES])} Format: Summary: [Your summary] Category: [One category] """ else: prompt = f""" You are an assistant that creates concise webpage summaries and assigns categories. Content: {content_text} Provide: 1. A concise summary (max two sentences) focusing on the main topic. 2. Assign the most appropriate category from the list below. Categories: {', '.join([f'"{cat}"' for cat in CATEGORIES])} Format: Summary: [Your summary] Category: [One category] """ # Estimate tokens def estimate_tokens(text): return len(text) / 4 # Approximate token estimation prompt_tokens = estimate_tokens(prompt) max_tokens = 150 # Reduced from 200 total_tokens = prompt_tokens + max_tokens # Calculate required delay tokens_per_minute = 60000 # Adjust based on your rate limit tokens_per_second = tokens_per_minute / 60 required_delay = total_tokens / tokens_per_second sleep_time = max(required_delay, 1) # Call the LLM via Groq Cloud API response = openai.ChatCompletion.create( model='llama-3.1-70b-versatile', # Using the specified model messages=[ {"role": "user", "content": prompt} ], max_tokens=int(max_tokens), temperature=0.5, ) content = response['choices'][0]['message']['content'].strip() if not content: raise ValueError("Empty response received from the model.") # Parse the response summary_match = re.search(r"Summary:\s*(.*)", content) category_match = re.search(r"Category:\s*(.*)", content) if summary_match: bookmark['summary'] = summary_match.group(1).strip() else: bookmark['summary'] = 'No summary available.' if category_match: category = category_match.group(1).strip().strip('"') if category in CATEGORIES: bookmark['category'] = category else: bookmark['category'] = 'Uncategorized' else: bookmark['category'] = 'Uncategorized' # Simple keyword-based validation (Optional) summary_lower = bookmark['summary'].lower() url_lower = bookmark['url'].lower() if 'social media' in summary_lower or 'twitter' in summary_lower or 'x.com' in url_lower: bookmark['category'] = 'Social Media' elif 'wikipedia' in url_lower: bookmark['category'] = 'Reference and Knowledge Bases' logger.info("Successfully generated summary and assigned category") time.sleep(sleep_time) break # Exit the retry loop upon success except openai.error.RateLimitError as e: retry_count += 1 wait_time = int(e.headers.get("Retry-After", 5)) logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...") time.sleep(wait_time) except Exception as e: logger.error(f"Error generating summary and assigning category: {e}", exc_info=True) bookmark['summary'] = 'No summary available.' bookmark['category'] = 'Uncategorized' break # Exit the retry loop on other exceptions def parse_bookmarks(file_content): """ Parse bookmarks from HTML file. """ logger.info("Parsing bookmarks") try: soup = BeautifulSoup(file_content, 'html.parser') extracted_bookmarks = [] for link in soup.find_all('a'): url = link.get('href') title = link.text.strip() if url and title: if url.startswith('http://') or url.startswith('https://'): extracted_bookmarks.append({'url': url, 'title': title}) else: logger.info(f"Skipping non-http/https URL: {url}") logger.info(f"Extracted {len(extracted_bookmarks)} bookmarks") return extracted_bookmarks except Exception as e: logger.error("Error parsing bookmarks: %s", e, exc_info=True) raise def fetch_url_info(bookmark): """ Fetch information about a URL. """ url = bookmark['url'] if url in fetch_cache: with lock: bookmark.update(fetch_cache[url]) return try: logger.info(f"Fetching URL info for: {url}") headers = { 'User-Agent': 'Mozilla/5.0', 'Accept-Language': 'en-US,en;q=0.9', } response = requests.get(url, headers=headers, timeout=5, verify=False, allow_redirects=True) bookmark['etag'] = response.headers.get('ETag', 'N/A') bookmark['status_code'] = response.status_code content = response.text logger.info(f"Fetched content length for {url}: {len(content)} characters") # Handle status codes if response.status_code >= 500: # Server error, consider as dead link bookmark['dead_link'] = True bookmark['description'] = '' bookmark['html_content'] = '' logger.warning(f"Dead link detected: {url} with status {response.status_code}") else: bookmark['dead_link'] = False bookmark['html_content'] = content bookmark['description'] = '' logger.info(f"Fetched information for {url}") except requests.exceptions.Timeout: bookmark['dead_link'] = False # Mark as 'Unknown' instead of 'Dead' bookmark['etag'] = 'N/A' bookmark['status_code'] = 'Timeout' bookmark['description'] = '' bookmark['html_content'] = '' bookmark['slow_link'] = True # Custom flag to indicate slow response logger.warning(f"Timeout while fetching {url}. Marking as 'Slow'.") except Exception as e: bookmark['dead_link'] = True bookmark['etag'] = 'N/A' bookmark['status_code'] = 'Error' bookmark['description'] = '' bookmark['html_content'] = '' logger.error(f"Error fetching URL info for {url}: {e}", exc_info=True) finally: with lock: fetch_cache[url] = { 'etag': bookmark.get('etag'), 'status_code': bookmark.get('status_code'), 'dead_link': bookmark.get('dead_link'), 'description': bookmark.get('description'), 'html_content': bookmark.get('html_content', ''), 'slow_link': bookmark.get('slow_link', False), } def vectorize_and_index(bookmarks_list): """ Create vector embeddings for bookmarks and build FAISS index with ID mapping. """ logger.info("Vectorizing summaries and building FAISS index") try: summaries = [bookmark['summary'] for bookmark in bookmarks_list] embeddings = embedding_model.encode(summaries) dimension = embeddings.shape[1] index = faiss.IndexIDMap(faiss.IndexFlatL2(dimension)) # Assign unique IDs to each bookmark ids = np.array([bookmark['id'] for bookmark in bookmarks_list], dtype=np.int64) index.add_with_ids(np.array(embeddings).astype('float32'), ids) logger.info("FAISS index built successfully with IDs") return index except Exception as e: logger.error(f"Error in vectorizing and indexing: {e}", exc_info=True) raise def display_bookmarks(): """ Generate HTML display for bookmarks. """ logger.info("Generating HTML display for bookmarks") cards = '' for i, bookmark in enumerate(bookmarks): index = i + 1 if bookmark.get('dead_link'): status = "❌ Dead Link" card_style = "border: 2px solid red;" text_style = "color: white;" # Set font color to white elif bookmark.get('slow_link'): status = "⏳ Slow Response" card_style = "border: 2px solid orange;" text_style = "color: white;" # Set font color to white else: status = "✅ Active" card_style = "border: 2px solid green;" text_style = "color: white;" # Set font color to white title = bookmark['title'] url = bookmark['url'] etag = bookmark.get('etag', 'N/A') summary = bookmark.get('summary', '') category = bookmark.get('category', 'Uncategorized') # Escape HTML content to prevent XSS attacks from html import escape title = escape(title) url = escape(url) summary = escape(summary) category = escape(category) card_html = f'''

{index}. {title} {status}

Category: {category}

URL: {url}

ETag: {etag}

Summary: {summary}

''' cards += card_html logger.info("HTML display generated") return cards def process_uploaded_file(file): """ Process the uploaded bookmarks file. """ global bookmarks, faiss_index logger.info("Processing uploaded file") if file is None: logger.warning("No file uploaded") return "Please upload a bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks() try: file_content = file.decode('utf-8') except UnicodeDecodeError as e: logger.error(f"Error decoding the file: {e}", exc_info=True) return "Error decoding the file. Please ensure it's a valid HTML file.", '', gr.update(choices=[]), display_bookmarks() try: bookmarks = parse_bookmarks(file_content) except Exception as e: logger.error(f"Error parsing bookmarks: {e}", exc_info=True) return "Error parsing the bookmarks HTML file.", '', gr.update(choices=[]), display_bookmarks() if not bookmarks: logger.warning("No bookmarks found in the uploaded file") return "No bookmarks found in the uploaded file.", '', gr.update(choices=[]), display_bookmarks() # Assign unique IDs to bookmarks for idx, bookmark in enumerate(bookmarks): bookmark['id'] = idx # Fetch bookmark info concurrently logger.info("Fetching URL info concurrently") with ThreadPoolExecutor(max_workers=20) as executor: executor.map(fetch_url_info, bookmarks) # Process bookmarks concurrently with LLM calls logger.info("Processing bookmarks with LLM concurrently") with ThreadPoolExecutor(max_workers=5) as executor: executor.map(generate_summary_and_assign_category, bookmarks) try: faiss_index = vectorize_and_index(bookmarks) except Exception as e: logger.error(f"Error building FAISS index: {e}", exc_info=True) return "Error building search index.", '', gr.update(choices=[]), display_bookmarks() message = f"✅ Successfully processed {len(bookmarks)} bookmarks." logger.info(message) # Generate displays and updates bookmark_html = display_bookmarks() choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)] return message, bookmark_html, gr.update(choices=choices), bookmark_html def delete_selected_bookmarks(selected_indices): """ Delete selected bookmarks and remove their vectors from the FAISS index. """ global bookmarks, faiss_index if not selected_indices: return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks() ids_to_delete = [] indices_to_delete = [] for s in selected_indices: idx = int(s.split('.')[0]) - 1 if 0 <= idx < len(bookmarks): bookmark_id = bookmarks[idx]['id'] ids_to_delete.append(bookmark_id) indices_to_delete.append(idx) logger.info(f"Deleting bookmark at index {idx + 1}") # Remove vectors from FAISS index if faiss_index is not None and ids_to_delete: faiss_index.remove_ids(np.array(ids_to_delete, dtype=np.int64)) # Remove bookmarks from the list (reverse order to avoid index shifting) for idx in sorted(indices_to_delete, reverse=True): bookmarks.pop(idx) message = "🗑️ Selected bookmarks deleted successfully." logger.info(message) choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)] return message, gr.update(choices=choices), display_bookmarks() def edit_selected_bookmarks_category(selected_indices, new_category): """ Edit category of selected bookmarks. """ if not selected_indices: return "⚠️ No bookmarks selected.", gr.update(choices=[]), display_bookmarks() if not new_category: return "⚠️ No new category selected.", gr.update(choices=[]), display_bookmarks() indices = [int(s.split('.')[0])-1 for s in selected_indices] for idx in indices: if 0 <= idx < len(bookmarks): bookmarks[idx]['category'] = new_category logger.info(f"Updated category for bookmark {idx + 1} to {new_category}") message = "✏️ Category updated for selected bookmarks." logger.info(message) # Update choices and display choices = [f"{i+1}. {bookmark['title']} (Category: {bookmark['category']})" for i, bookmark in enumerate(bookmarks)] return message, gr.update(choices=choices), display_bookmarks() def export_bookmarks(): """ Export bookmarks to an HTML file. """ if not bookmarks: logger.warning("No bookmarks to export") return None # Return None instead of a message try: logger.info("Exporting bookmarks to HTML") soup = BeautifulSoup("Bookmarks

Bookmarks

", 'html.parser') dl = soup.new_tag('DL') for bookmark in bookmarks: dt = soup.new_tag('DT') a = soup.new_tag('A', href=bookmark['url']) a.string = bookmark['title'] dt.append(a) dl.append(dt) soup.append(dl) html_content = str(soup) # Save to a temporary file output_file = "exported_bookmarks.html" with open(output_file, 'w', encoding='utf-8') as f: f.write(html_content) logger.info("Bookmarks exported successfully") return output_file # Return the file path except Exception as e: logger.error(f"Error exporting bookmarks: {e}", exc_info=True) return None # Return None in case of error def chatbot_response(user_query, chat_history): """ Generate chatbot response using the FAISS index and embeddings, maintaining chat history. """ if not bookmarks or faiss_index is None: logger.warning("No bookmarks available for chatbot") chat_history.append((user_query, "⚠️ No bookmarks available. Please upload and process your bookmarks first.")) return chat_history logger.info(f"Chatbot received query: {user_query}") try: # Encode the user query query_vector = embedding_model.encode([user_query]).astype('float32') # Search the FAISS index k = 5 # Number of results to return distances, ids = faiss_index.search(query_vector, k) ids = ids.flatten() # Retrieve the bookmarks id_to_bookmark = {bookmark['id']: bookmark for bookmark in bookmarks} matching_bookmarks = [id_to_bookmark.get(id) for id in ids if id in id_to_bookmark] if not matching_bookmarks: answer = "No relevant bookmarks found for your query." chat_history.append((user_query, answer)) return chat_history # Format the response bookmarks_info = "\n".join([ f"Title: {bookmark['title']}\nURL: {bookmark['url']}\nSummary: {bookmark['summary']}" for bookmark in matching_bookmarks ]) # Use the LLM via Groq Cloud API to generate a response prompt = f""" A user asked: "{user_query}" Based on the bookmarks below, provide a helpful answer to the user's query, referencing the relevant bookmarks. Bookmarks: {bookmarks_info} Provide a concise and helpful response. """ # Estimate tokens def estimate_tokens(text): return len(text) / 4 # Approximate token estimation prompt_tokens = estimate_tokens(prompt) max_tokens = 300 # Adjust as needed total_tokens = prompt_tokens + max_tokens # Calculate required delay tokens_per_minute = 60000 # Adjust based on your rate limit tokens_per_second = tokens_per_minute / 60 required_delay = total_tokens / tokens_per_second sleep_time = max(required_delay, 1) response = openai.ChatCompletion.create( model='llama-3.1-70b-versatile', # Using the specified model messages=[ {"role": "user", "content": prompt} ], max_tokens=int(max_tokens), temperature=0.7, ) answer = response['choices'][0]['message']['content'].strip() logger.info("Chatbot response generated") time.sleep(sleep_time) # Append the interaction to chat history chat_history.append((user_query, answer)) return chat_history except openai.error.RateLimitError as e: wait_time = int(e.headers.get("Retry-After", 5)) logger.warning(f"Rate limit reached. Waiting for {wait_time} seconds before retrying...") time.sleep(wait_time) return chatbot_response(user_query, chat_history) # Retry after waiting except Exception as e: error_message = f"⚠️ Error processing your query: {str(e)}" logger.error(error_message, exc_info=True) chat_history.append((user_query, error_message)) return chat_history def build_app(): """ Build and launch the Gradio app. """ try: logger.info("Building Gradio app") with gr.Blocks(css="app.css") as demo: # General Overview gr.Markdown(""" # 📚 SmartMarks - AI Browser Bookmarks Manager Welcome to **SmartMarks**, your intelligent assistant for managing browser bookmarks. SmartMarks leverages AI to help you organize, search, and interact with your bookmarks seamlessly. --- ## 🚀 **How to Use SmartMarks** SmartMarks is divided into three main sections: 1. **📂 Upload and Process Bookmarks:** Import your existing bookmarks and let SmartMarks analyze and categorize them for you. 2. **💬 Chat with Bookmarks:** Interact with your bookmarks using natural language queries to find relevant links effortlessly. 3. **🛠️ Manage Bookmarks:** View, edit, delete, and export your bookmarks with ease. """) # Upload and Process Bookmarks Tab with gr.Tab("Upload and Process Bookmarks"): gr.Markdown(""" ## 📂 **Upload and Process Bookmarks** ### 📝 **Steps:** 1. Click on the "Upload Bookmarks HTML File" button 2. Select your bookmarks file 3. Click "Process Bookmarks" to analyze and organize your bookmarks """) upload = gr.File(label="📁 Upload Bookmarks HTML File", type='binary') process_button = gr.Button("⚙️ Process Bookmarks") output_text = gr.Textbox(label="✅ Output", interactive=False) bookmark_display = gr.HTML(label="📄 Processed Bookmarks") # Chat with Bookmarks Tab with gr.Tab("Chat with Bookmarks"): gr.Markdown(""" ## 💬 **Chat with Bookmarks** Ask questions about your bookmarks and get relevant results. """) chatbot = gr.Chatbot(label="💬 Chat with SmartMarks") user_input = gr.Textbox( label="✍️ Ask about your bookmarks", placeholder="e.g., Do I have any bookmarks about AI?" ) chat_button = gr.Button("📨 Send") # Manage Bookmarks Tab with gr.Tab("Manage Bookmarks"): gr.Markdown(""" ## 🛠️ **Manage Bookmarks** Select bookmarks to delete or edit their categories. """) manage_output = gr.Textbox(label="🔄 Status", interactive=False) bookmark_selector = gr.CheckboxGroup( label="✅ Select Bookmarks", choices=[] ) new_category = gr.Dropdown( label="🆕 New Category", choices=CATEGORIES, value="Uncategorized" ) bookmark_display_manage = gr.HTML(label="📄 Bookmarks") with gr.Row(): delete_button = gr.Button("🗑️ Delete Selected") edit_category_button = gr.Button("✏️ Edit Category") export_button = gr.Button("💾 Export") download_link = gr.File(label="📥 Download Exported Bookmarks") # Set up event handlers process_button.click( process_uploaded_file, inputs=upload, outputs=[output_text, bookmark_display, bookmark_selector, bookmark_display_manage] ) chat_button.click( chatbot_response, inputs=[user_input, chatbot], outputs=chatbot ) delete_button.click( delete_selected_bookmarks, inputs=bookmark_selector, outputs=[manage_output, bookmark_selector, bookmark_display_manage] ) edit_category_button.click( edit_selected_bookmarks_category, inputs=[bookmark_selector, new_category], outputs=[manage_output, bookmark_selector, bookmark_display_manage] ) export_button.click( export_bookmarks, outputs=download_link ) logger.info("Launching Gradio app") demo.launch(debug=True) except Exception as e: logger.error(f"Error building the app: {e}", exc_info=True) print(f"Error building the app: {e}") if __name__ == "__main__": build_app()