File size: 2,818 Bytes
1df1eb4 8aaed31 1df1eb4 e81cad8 1df1eb4 e81cad8 1df1eb4 8aaed31 1df1eb4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
from groq import Groq
from pydantic import BaseModel, ValidationError
from typing import List, Literal
import os
import tiktoken
import json
import re
from gtts import gTTS
import tempfile
groq_client = Groq(api_key=os.environ["GROQ_API_KEY"])
tokenizer = tiktoken.get_encoding("cl100k_base")
class DialogueItem(BaseModel):
speaker: Literal["Maria", "Sarah"]
text: str
class Dialogue(BaseModel):
dialogue: List[DialogueItem]
def truncate_text(text, max_tokens=2048):
tokens = tokenizer.encode(text)
if len(tokens) > max_tokens:
return tokenizer.decode(tokens[:max_tokens])
return text
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str):
input_text = truncate_text(input_text)
word_limit = 300 if target_length == "Short (1-2 min)" else 750 # Assuming 150 words per minute
prompt = f"""
{system_prompt}
TONE: {tone}
TARGET LENGTH: {target_length} (approximately {word_limit} words)
INPUT TEXT: {input_text}
Generate a complete, well-structured podcast script that:
1. Starts with a proper introduction
2. Covers the main points from the input text
3. Has a natural flow of conversation between Maria and Sarah
4. Concludes with a summary and sign-off
5. Fits within the {word_limit} word limit for the target length of {target_length}
Ensure the script is not abruptly cut off and forms a complete conversation.
"""
response = groq_client.chat.completions.create(
messages=[
{"role": "system", "content": prompt},
],
model="llama-3.1-70b-versatile",
max_tokens=2048,
temperature=0.7
)
content = response.choices[0].message.content
content = re.sub(r'```json\s*|\s*```', '', content)
try:
json_data = json.loads(content)
dialogue = Dialogue.model_validate(json_data)
except json.JSONDecodeError as json_error:
match = re.search(r'\{.*\}', content, re.DOTALL)
if match:
try:
json_data = json.loads(match.group())
dialogue = Dialogue.model_validate(json_data)
except (json.JSONDecodeError, ValidationError) as e:
raise ValueError(f"Failed to parse dialogue JSON: {e}\nContent: {content}")
else:
raise ValueError(f"Failed to find valid JSON in the response: {content}")
except ValidationError as e:
raise ValueError(f"Failed to validate dialogue structure: {e}\nContent: {content}")
return dialogue
def generate_audio(text: str, speaker: str) -> str:
tts = gTTS(text=text, lang='en', tld='com')
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
tts.save(temp_audio.name)
return temp_audio.name |