|
import gradio as gr |
|
from utils import generate_script, generate_audio, truncate_text, extract_text_from_url |
|
from prompts import SYSTEM_PROMPT |
|
from pydub import AudioSegment |
|
import pypdf |
|
import os |
|
import tempfile |
|
|
|
def generate_podcast(file, url, tone, length): |
|
if file and url: |
|
raise gr.Error("Please provide either a PDF file or a URL, not both.") |
|
|
|
if file: |
|
if not file.name.lower().endswith('.pdf'): |
|
raise gr.Error("Please upload a PDF file.") |
|
|
|
try: |
|
pdf_reader = pypdf.PdfReader(file.name) |
|
text = "" |
|
for page in pdf_reader.pages: |
|
text += page.extract_text() |
|
except Exception as e: |
|
raise gr.Error(f"Error reading the PDF file: {str(e)}") |
|
elif url: |
|
try: |
|
text = extract_text_from_url(url) |
|
except Exception as e: |
|
raise gr.Error(f"Error extracting text from URL: {str(e)}") |
|
else: |
|
raise gr.Error("Please provide either a PDF file or a URL.") |
|
|
|
truncated_text = truncate_text(text) |
|
if len(truncated_text) < len(text): |
|
print("Warning: The input text was truncated to fit within 2048 tokens.") |
|
|
|
try: |
|
script = generate_script(SYSTEM_PROMPT, truncated_text, tone, length) |
|
except Exception as e: |
|
raise gr.Error(f"Error generating script: {str(e)}") |
|
|
|
audio_segments = [] |
|
transcript = "" |
|
try: |
|
for item in script.dialogue: |
|
audio_file = generate_audio(item.text, item.speaker) |
|
audio_segment = AudioSegment.from_mp3(audio_file) |
|
audio_segments.append(audio_segment) |
|
transcript += f"**{item.speaker}**: {item.text}\n\n" |
|
os.remove(audio_file) |
|
except Exception as e: |
|
raise gr.Error(f"Error generating audio: {str(e)}") |
|
|
|
combined_audio = sum(audio_segments) |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: |
|
combined_audio.export(temp_audio.name, format="mp3") |
|
temp_audio_path = temp_audio.name |
|
|
|
return temp_audio_path, transcript |
|
|
|
instructions = """ |
|
# Podcast Generator |
|
|
|
Welcome to the Podcast Generator project! This tool allows you to create custom podcast episodes using AI-generated content. |
|
|
|
## Features |
|
* Generate podcast scripts from PDF content or web pages |
|
* Convert text to speech for a natural listening experience |
|
* Choose the tone of your podcast |
|
* Export episodes as MP3 files |
|
|
|
## How to Use |
|
1. Upload a PDF file OR enter a URL (content will be truncated to 2048 tokens if longer) |
|
2. Select the desired tone (humorous, casual, formal) |
|
3. Choose the podcast length |
|
4. Click "Generate" to create your podcast |
|
5. Listen to the generated audio and review the transcript |
|
|
|
Note: This tool uses the LLaMa 3.1 70B model for script generation and gTTS for text-to-speech conversion. The input is limited to 2048 tokens to ensure compatibility with the model. |
|
""" |
|
|
|
iface = gr.Interface( |
|
fn=generate_podcast, |
|
inputs=[ |
|
gr.File(label="Upload PDF file (optional)", file_types=[".pdf"]), |
|
gr.Textbox(label="OR Enter URL"), |
|
gr.Radio(["humorous", "casual", "formal"], label="Select podcast tone", value="casual"), |
|
gr.Radio(["Short (1-2 min)", "Medium (3-5 min)"], label="Podcast length", value="Medium (3-5 min)") |
|
], |
|
outputs=[ |
|
gr.Audio(label="Generated Podcast"), |
|
gr.Markdown(label="Transcript") |
|
], |
|
title="Custom NotebookLM-type Podcast Generator (2048 token limit)", |
|
description=instructions, |
|
allow_flagging="never", |
|
theme=gr.themes.Soft() |
|
) |
|
|
|
if __name__ == "__main__": |
|
iface.launch() |