|
from groq import Groq |
|
from pydantic import BaseModel, ValidationError |
|
from typing import List, Literal |
|
import os |
|
import tiktoken |
|
import tempfile |
|
import json |
|
import re |
|
from transformers import pipeline |
|
import torch |
|
import soundfile as sf |
|
|
|
groq_client = Groq(api_key=os.environ["GROQ_API_KEY"]) |
|
tokenizer = tiktoken.get_encoding("cl100k_base") |
|
|
|
|
|
tts_male = pipeline("text-to-speech", model="microsoft/speecht5_tts", device="cpu") |
|
tts_female = pipeline("text-to-speech", model="microsoft/speecht5_tts", device="cpu") |
|
|
|
|
|
male_embedding = torch.load("https://huggingface.co/microsoft/speecht5_tts/resolve/main/en_speaker_1.pt") |
|
female_embedding = torch.load("https://huggingface.co/microsoft/speecht5_tts/resolve/main/en_speaker_9.pt") |
|
|
|
class DialogueItem(BaseModel): |
|
speaker: Literal["John", "Sarah"] |
|
text: str |
|
|
|
class Dialogue(BaseModel): |
|
dialogue: List[DialogueItem] |
|
|
|
def truncate_text(text, max_tokens=2048): |
|
tokens = tokenizer.encode(text) |
|
if len(tokens) > max_tokens: |
|
return tokenizer.decode(tokens[:max_tokens]) |
|
return text |
|
|
|
def generate_script(system_prompt: str, input_text: str, tone: str): |
|
input_text = truncate_text(input_text) |
|
prompt = f"{system_prompt}\nTONE: {tone}\nINPUT TEXT: {input_text}" |
|
|
|
response = groq_client.chat.completions.create( |
|
messages=[ |
|
{"role": "system", "content": prompt}, |
|
], |
|
model="llama-3.1-70b-versatile", |
|
max_tokens=2048, |
|
temperature=0.7 |
|
) |
|
|
|
content = response.choices[0].message.content |
|
content = re.sub(r'```json\s*|\s*```', '', content) |
|
|
|
try: |
|
json_data = json.loads(content) |
|
dialogue = Dialogue.model_validate(json_data) |
|
except json.JSONDecodeError as json_error: |
|
match = re.search(r'\{.*\}', content, re.DOTALL) |
|
if match: |
|
try: |
|
json_data = json.loads(match.group()) |
|
dialogue = Dialogue.model_validate(json_data) |
|
except (json.JSONDecodeError, ValidationError) as e: |
|
raise ValueError(f"Failed to parse dialogue JSON: {e}\nContent: {content}") |
|
else: |
|
raise ValueError(f"Failed to find valid JSON in the response: {content}") |
|
except ValidationError as e: |
|
raise ValueError(f"Failed to validate dialogue structure: {e}\nContent: {content}") |
|
|
|
return dialogue |
|
|
|
def generate_audio(text: str, speaker: str) -> str: |
|
if speaker == "John": |
|
speech = tts_male(text, speaker_embeddings=male_embedding) |
|
else: |
|
speech = tts_female(text, speaker_embeddings=female_embedding) |
|
|
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: |
|
sf.write(temp_audio.name, speech["audio"], speech["sampling_rate"]) |
|
return temp_audio.name |