|
from groq import Groq |
|
from pydantic import BaseModel, ValidationError |
|
from typing import List, Literal |
|
import os |
|
import tiktoken |
|
import json |
|
import re |
|
import tempfile |
|
import requests |
|
from bs4 import BeautifulSoup |
|
import subprocess |
|
import pyttsx3 |
|
from pydub import AudioSegment |
|
|
|
groq_client = Groq(api_key=os.environ["GROQ_API_KEY"]) |
|
tokenizer = tiktoken.get_encoding("cl100k_base") |
|
|
|
class DialogueItem(BaseModel): |
|
speaker: Literal["Maria", "Sarah"] |
|
text: str |
|
|
|
class Dialogue(BaseModel): |
|
dialogue: List[DialogueItem] |
|
|
|
def truncate_text(text, max_tokens=2048): |
|
tokens = tokenizer.encode(text) |
|
if len(tokens) > max_tokens: |
|
return tokenizer.decode(tokens[:max_tokens]) |
|
return text |
|
|
|
def extract_text_from_url(url): |
|
try: |
|
response = requests.get(url) |
|
response.raise_for_status() |
|
soup = BeautifulSoup(response.text, 'html.parser') |
|
|
|
for script in soup(["script", "style"]): |
|
script.decompose() |
|
|
|
text = soup.get_text() |
|
lines = (line.strip() for line in text.splitlines()) |
|
chunks = (phrase.strip() for line in lines for phrase in line.split(" ")) |
|
text = '\n'.join(chunk for chunk in chunks if chunk) |
|
|
|
return text |
|
except Exception as e: |
|
raise ValueError(f"Error extracting text from URL: {str(e)}") |
|
|
|
def generate_script(system_prompt: str, input_text: str, tone: str, target_length: str): |
|
input_text = truncate_text(input_text) |
|
word_limit = 300 if target_length == "Short (1-2 min)" else 750 |
|
|
|
prompt = f""" |
|
{system_prompt} |
|
TONE: {tone} |
|
TARGET LENGTH: {target_length} (approximately {word_limit} words) |
|
INPUT TEXT: {input_text} |
|
|
|
Generate a complete, well-structured podcast script that: |
|
1. Starts with a proper introduction |
|
2. Covers the main points from the input text |
|
3. Has a natural flow of conversation between Maria and Sarah |
|
4. Concludes with a summary and sign-off |
|
5. Fits within the {word_limit} word limit for the target length of {target_length} |
|
|
|
Ensure the script is not abruptly cut off and forms a complete conversation. |
|
""" |
|
|
|
response = groq_client.chat.completions.create( |
|
messages=[ |
|
{"role": "system", "content": prompt}, |
|
], |
|
model="llama-3.1-70b-versatile", |
|
max_tokens=2048, |
|
temperature=0.7 |
|
) |
|
|
|
content = response.choices[0].message.content |
|
content = re.sub(r'```json\s*|\s*```', '', content) |
|
|
|
try: |
|
json_data = json.loads(content) |
|
dialogue = Dialogue.model_validate(json_data) |
|
except json.JSONDecodeError as json_error: |
|
match = re.search(r'\{.*\}', content, re.DOTALL) |
|
if match: |
|
try: |
|
json_data = json.loads(match.group()) |
|
dialogue = Dialogue.model_validate(json_data) |
|
except (json.JSONDecodeError, ValidationError) as e: |
|
raise ValueError(f"Failed to parse dialogue JSON: {e}\nContent: {content}") |
|
else: |
|
raise ValueError(f"Failed to find valid JSON in the response: {content}") |
|
except ValidationError as e: |
|
raise ValueError(f"Failed to validate dialogue structure: {e}\nContent: {content}") |
|
|
|
return dialogue |
|
|
|
def generate_audio_espeak(text: str, speaker: str) -> str: |
|
voice = "en-us+f3" if speaker == "Maria" else "en-gb+f3" |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: |
|
subprocess.call(['espeak-ng', '-v', voice, '-w', temp_audio.name, text]) |
|
return temp_audio.name |
|
|
|
def generate_audio_pyttsx3(text: str, speaker: str) -> str: |
|
engine = pyttsx3.init() |
|
voices = engine.getProperty('voices') |
|
engine.setProperty('voice', voices[1].id if speaker == "Maria" else voices[0].id) |
|
with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as temp_audio: |
|
engine.save_to_file(text, temp_audio.name) |
|
engine.runAndWait() |
|
return temp_audio.name |
|
|
|
def generate_audio(text: str, speaker: str) -> str: |
|
try: |
|
return generate_audio_espeak(text, speaker) |
|
except Exception: |
|
return generate_audio_pyttsx3(text, speaker) |