siddhartharya
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,90 @@
|
|
1 |
import gradio as gr
|
2 |
-
from utils import generate_script, generate_audio
|
3 |
from prompts import SYSTEM_PROMPT
|
4 |
from pydub import AudioSegment
|
|
|
5 |
import os
|
|
|
|
|
6 |
|
7 |
def generate_podcast(file, tone, length):
|
8 |
# Extract text from PDF
|
9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
# Generate audio for each dialogue item
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
# Combine audio segments
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
# Gradio interface
|
15 |
instructions = """
|
16 |
# Podcast Generator
|
17 |
|
18 |
Welcome to the Podcast Generator project! This tool allows you to create custom podcast episodes using AI-generated content.
|
19 |
|
20 |
## Features
|
21 |
-
* Generate podcast scripts
|
22 |
* Convert text to speech for a natural listening experience
|
23 |
* Choose the tone of your podcast
|
24 |
* Export episodes as MP3 files
|
25 |
|
26 |
## How to Use
|
27 |
-
1. Upload a PDF file (
|
28 |
2. Select the desired tone (humorous, casual, formal)
|
29 |
3. Choose the podcast length
|
30 |
4. Click "Generate" to create your podcast
|
31 |
5. Listen to the generated audio and review the transcript
|
|
|
|
|
32 |
"""
|
33 |
|
34 |
iface = gr.Interface(
|
35 |
fn=generate_podcast,
|
36 |
inputs=[
|
37 |
-
gr.File(label="Upload PDF file"),
|
38 |
gr.Radio(["humorous", "casual", "formal"], label="Select podcast tone", value="casual"),
|
39 |
gr.Radio(["Short (1-2 min)", "Medium (3-5 min)"], label="Podcast length", value="Medium (3-5 min)")
|
40 |
],
|
@@ -42,8 +92,11 @@ iface = gr.Interface(
|
|
42 |
gr.Audio(label="Generated Podcast"),
|
43 |
gr.Markdown(label="Transcript")
|
44 |
],
|
45 |
-
title="Custom NotebookLM-type Podcast Generator",
|
46 |
-
description=instructions
|
|
|
|
|
47 |
)
|
48 |
|
49 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from utils import generate_script, generate_audio, truncate_text
|
3 |
from prompts import SYSTEM_PROMPT
|
4 |
from pydub import AudioSegment
|
5 |
+
import pypdf
|
6 |
import os
|
7 |
+
import io
|
8 |
+
import tempfile
|
9 |
|
10 |
def generate_podcast(file, tone, length):
|
11 |
# Extract text from PDF
|
12 |
+
if not file.name.lower().endswith('.pdf'):
|
13 |
+
raise gr.Error("Please upload a PDF file.")
|
14 |
+
|
15 |
+
try:
|
16 |
+
pdf_reader = pypdf.PdfReader(file.name)
|
17 |
+
text = ""
|
18 |
+
for page in pdf_reader.pages:
|
19 |
+
text += page.extract_text()
|
20 |
+
except Exception as e:
|
21 |
+
raise gr.Error(f"Error reading the PDF file: {str(e)}")
|
22 |
+
|
23 |
+
# Truncate text to 2048 tokens
|
24 |
+
truncated_text = truncate_text(text)
|
25 |
+
if len(truncated_text) < len(text):
|
26 |
+
print("Warning: The input text was truncated to fit within 2048 tokens.")
|
27 |
+
|
28 |
+
# Generate script
|
29 |
+
try:
|
30 |
+
script = generate_script(SYSTEM_PROMPT, truncated_text, tone)
|
31 |
+
except Exception as e:
|
32 |
+
raise gr.Error(f"Error generating script: {str(e)}")
|
33 |
+
|
34 |
# Generate audio for each dialogue item
|
35 |
+
audio_segments = []
|
36 |
+
transcript = ""
|
37 |
+
try:
|
38 |
+
for item in script.dialogue:
|
39 |
+
audio_file = generate_audio(item.text, item.speaker)
|
40 |
+
audio_segment = AudioSegment.from_mp3(audio_file)
|
41 |
+
audio_segments.append(audio_segment)
|
42 |
+
transcript += f"**{item.speaker}**: {item.text}\n\n"
|
43 |
+
os.remove(audio_file) # Clean up temporary audio file
|
44 |
+
except Exception as e:
|
45 |
+
raise gr.Error(f"Error generating audio: {str(e)}")
|
46 |
+
|
47 |
# Combine audio segments
|
48 |
+
combined_audio = sum(audio_segments)
|
49 |
+
|
50 |
+
# Adjust length if needed
|
51 |
+
if length == "Short (1-2 min)":
|
52 |
+
combined_audio = combined_audio[:120000] # 2 minutes max
|
53 |
+
else: # "Medium (3-5 min)"
|
54 |
+
combined_audio = combined_audio[:300000] # 5 minutes max
|
55 |
+
|
56 |
+
# Save combined audio to a temporary file
|
57 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio:
|
58 |
+
combined_audio.export(temp_audio.name, format="mp3")
|
59 |
+
temp_audio_path = temp_audio.name
|
60 |
+
|
61 |
+
return temp_audio_path, transcript
|
62 |
|
|
|
63 |
instructions = """
|
64 |
# Podcast Generator
|
65 |
|
66 |
Welcome to the Podcast Generator project! This tool allows you to create custom podcast episodes using AI-generated content.
|
67 |
|
68 |
## Features
|
69 |
+
* Generate podcast scripts from PDF content
|
70 |
* Convert text to speech for a natural listening experience
|
71 |
* Choose the tone of your podcast
|
72 |
* Export episodes as MP3 files
|
73 |
|
74 |
## How to Use
|
75 |
+
1. Upload a PDF file (content will be truncated to 2048 tokens if longer)
|
76 |
2. Select the desired tone (humorous, casual, formal)
|
77 |
3. Choose the podcast length
|
78 |
4. Click "Generate" to create your podcast
|
79 |
5. Listen to the generated audio and review the transcript
|
80 |
+
|
81 |
+
Note: This tool uses the LLaMa 3.1 70B model for script generation and gTTS for text-to-speech conversion. The input is limited to 2048 tokens to ensure compatibility with the model.
|
82 |
"""
|
83 |
|
84 |
iface = gr.Interface(
|
85 |
fn=generate_podcast,
|
86 |
inputs=[
|
87 |
+
gr.File(label="Upload PDF file", type="file"),
|
88 |
gr.Radio(["humorous", "casual", "formal"], label="Select podcast tone", value="casual"),
|
89 |
gr.Radio(["Short (1-2 min)", "Medium (3-5 min)"], label="Podcast length", value="Medium (3-5 min)")
|
90 |
],
|
|
|
92 |
gr.Audio(label="Generated Podcast"),
|
93 |
gr.Markdown(label="Transcript")
|
94 |
],
|
95 |
+
title="Custom NotebookLM-type Podcast Generator (2048 token limit)",
|
96 |
+
description=instructions,
|
97 |
+
allow_flagging="never",
|
98 |
+
theme=gr.themes.Soft()
|
99 |
)
|
100 |
|
101 |
+
if __name__ == "__main__":
|
102 |
+
iface.launch()
|