from groq import Groq from pydantic import BaseModel, ValidationError from typing import List, Literal import os import tiktoken import json import re from gtts import gTTS import tempfile groq_client = Groq(api_key=os.environ["GROQ_API_KEY"]) tokenizer = tiktoken.get_encoding("cl100k_base") class DialogueItem(BaseModel): speaker: Literal["Maria", "Sarah"] text: str class Dialogue(BaseModel): dialogue: List[DialogueItem] def truncate_text(text, max_tokens=2048): tokens = tokenizer.encode(text) if len(tokens) > max_tokens: return tokenizer.decode(tokens[:max_tokens]) return text def generate_script(system_prompt: str, input_text: str, tone: str): input_text = truncate_text(input_text) prompt = f"{system_prompt}\nTONE: {tone}\nINPUT TEXT: {input_text}" response = groq_client.chat.completions.create( messages=[ {"role": "system", "content": prompt}, ], model="llama-3.1-70b-versatile", max_tokens=2048, temperature=0.7 ) content = response.choices[0].message.content content = re.sub(r'```json\s*|\s*```', '', content) try: json_data = json.loads(content) dialogue = Dialogue.model_validate(json_data) except json.JSONDecodeError as json_error: match = re.search(r'\{.*\}', content, re.DOTALL) if match: try: json_data = json.loads(match.group()) dialogue = Dialogue.model_validate(json_data) except (json.JSONDecodeError, ValidationError) as e: raise ValueError(f"Failed to parse dialogue JSON: {e}\nContent: {content}") else: raise ValueError(f"Failed to find valid JSON in the response: {content}") except ValidationError as e: raise ValueError(f"Failed to validate dialogue structure: {e}\nContent: {content}") return dialogue def generate_audio(text: str, speaker: str) -> str: tts = gTTS(text=text, lang='en', tld='com') with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_audio: tts.save(temp_audio.name) return temp_audio.name