File size: 7,071 Bytes
2f50c94
b6a2224
37185e0
8d271f0
37185e0
0c3b71f
41f95b2
0707373
 
 
 
41f95b2
 
 
 
0707373
 
 
 
 
8d271f0
37185e0
0c3b71f
 
 
b6a2224
 
0c3b71f
b6a2224
e7bb3db
0c3b71f
 
 
 
 
 
 
 
b6a2224
e7bb3db
 
 
 
0c3b71f
e7bb3db
0c3b71f
e7bb3db
8d271f0
 
67c2abc
8d271f0
 
 
67c2abc
 
 
 
8d271f0
 
 
 
 
67c2abc
8d271f0
 
 
 
67c2abc
8d271f0
b682b3b
 
b020659
 
b682b3b
b020659
 
 
 
 
 
 
 
b682b3b
 
 
8d271f0
67c2abc
8d271f0
bd877a9
e7bb3db
0c3b71f
b020659
e7bb3db
 
 
e50fdf4
 
 
0c3b71f
 
e7bb3db
0c3b71f
 
e7bb3db
 
 
 
 
 
 
 
0c3b71f
e7bb3db
 
0c3b71f
b020659
7ea79b0
 
 
8d271f0
 
7ea79b0
b020659
7ea79b0
 
 
 
 
 
 
ebcf536
7ea79b0
 
 
0c3b71f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import gradio as gr
import requests
import os
import json

class AutonomousEmailAgent:
    def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
        self.linkedin_url = linkedin_url
        self.company_name = company_name
        self.role = role
        self.word_limit = word_limit
        self.user_name = user_name
        self.email = email
        self.phone = phone
        self.linkedin = linkedin
        self.bio = None
        self.skills = []
        self.experiences = []
        self.company_info = None
        self.role_description = None
        self.company_url = None

    # Reason and Act via LLM: Let the LLM control reasoning and actions dynamically
    def autonomous_reasoning(self):
        print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
        
        reasoning_prompt = f"""
        You are an autonomous agent responsible for generating a job application email.
        
        Here’s the current data:
        - LinkedIn profile: {self.linkedin_url}
        - Company Name: {self.company_name}
        - Role: {self.role}
        - Candidate's Bio: {self.bio}
        - Candidate's Skills: {', '.join(self.skills)}
        - Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
        - Company Information: {self.company_info}
        - Role Description: {self.role_description}
        
        Based on this data, decide if it is sufficient to generate the email. If some information is missing or insufficient, respond with:
        1. "scrape" to fetch more data from the company website.
        2. "generate_email" to proceed with the email generation.
        3. "fallback" to use default values.

        After generating the email, reflect on whether the content aligns with the role and company and whether any improvements are needed. Respond clearly with one of the above options.
        """
        
        return self.send_request_to_llm(reasoning_prompt)

    # Send request to Groq Cloud LLM with enhanced debugging and error handling
    def send_request_to_llm(self, prompt):
        print("Sending request to Groq Cloud LLM...")
        api_key = os.getenv("GROQ_API_KEY")
        if not api_key:
            print("Error: API key not found. Please set the GROQ_API_KEY environment variable.")
            return "Error: API key not found."
        
        headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }
        data = {
            "model": "llama-3.1-70b-versatile",  # Model name
            "messages": [{"role": "user", "content": prompt}]
        }
        response = requests.post("https://api.groq.com/openai/v1/chat/completions", headers=headers, json=data)
        
        print(f"Status Code: {response.status_code}")
        if response.status_code == 200:
            try:
                result = response.json()  # Parse the response as JSON
                print(f"LLM Response: {json.dumps(result, indent=2)}")  # Print the full response for debugging

                # Check if 'choices' and the content are correctly structured in the response
                choices = result.get("choices", [])
                if choices and "message" in choices[0]:
                    content = choices[0]["message"]["content"]
                    print(f"Content: {content}")
                    return self.act_on_llm_instructions(content)
                else:
                    print("Error: Unrecognized format in LLM response.")
                    return "Error: Unrecognized response format."
            except json.JSONDecodeError:
                print("Error: Response from Groq Cloud LLM is not valid JSON.")
                return "Error: Response is not in JSON format."
        else:
            print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}, Response: {response.text}")
            return "Error: Unable to generate response."

    # Function to act on the LLM's structured instructions
    def act_on_llm_instructions(self, reasoning_output):
        print(f"LLM Instruction: {reasoning_output}")  # Print the LLM's instruction for debugging
        instruction = reasoning_output.lower().strip()

        if "scrape" in instruction:
            self.fetch_company_url()
            if self.company_url:
                self.fetch_company_info_with_firecrawl(self.company_url)
            return self.autonomous_reasoning()

        elif "generate_email" in instruction:
            return self.generate_email()

        elif "fallback" in instruction:
            print("Action: Using fallback values for missing data.")
            if not self.company_info:
                self.company_info = "A leading company in its field."
            if not self.role_description:
                self.role_description = f"The role of {self.role} involves leadership and team management."
            return self.generate_email()

        else:
            print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
            return self.generate_email()

    # Other methods (fetch_linkedin_data, fetch_company_url, fetch_company_info_with_firecrawl, generate_email) remain unchanged...

    # Main loop following ReAct pattern
    def run(self):
        self.fetch_linkedin_data()
        return self.autonomous_reasoning()

# Gradio UI setup remains the same as before
def gradio_ui():
    name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
    company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
    role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
    email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
    phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
    linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
    word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
    
    email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)

    def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
        agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
        return agent.run()

    demo = gr.Interface(
        fn=create_email,
        inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
        outputs=[email_output],
        title="Email Writing AI Agent with ReAct",
        description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
        allow_flagging="never"
    )
    
    demo.launch()

if __name__ == "__main__":
    gradio_ui()