Update app.py
Browse files
app.py
CHANGED
@@ -20,6 +20,31 @@ class AutonomousEmailAgent:
|
|
20 |
self.role_description = None
|
21 |
self.company_url = None
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
# Reason and Act via LLM: Let the LLM control reasoning and actions dynamically
|
24 |
def autonomous_reasoning(self):
|
25 |
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
|
@@ -113,14 +138,77 @@ class AutonomousEmailAgent:
|
|
113 |
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
|
114 |
return self.generate_email()
|
115 |
|
116 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
|
118 |
# Main loop following ReAct pattern
|
119 |
def run(self):
|
120 |
self.fetch_linkedin_data()
|
121 |
return self.autonomous_reasoning()
|
122 |
|
123 |
-
# Gradio UI setup remains the same
|
124 |
def gradio_ui():
|
125 |
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
|
126 |
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
|
|
|
20 |
self.role_description = None
|
21 |
self.company_url = None
|
22 |
|
23 |
+
# Fetch LinkedIn data via Proxycurl
|
24 |
+
def fetch_linkedin_data(self):
|
25 |
+
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY")
|
26 |
+
if not self.linkedin_url:
|
27 |
+
print("Action: No LinkedIn URL provided, using default bio.")
|
28 |
+
self.bio = "A professional with diverse experience."
|
29 |
+
self.skills = ["Adaptable", "Hardworking"]
|
30 |
+
self.experiences = ["Worked across various industries"]
|
31 |
+
else:
|
32 |
+
print("Action: Fetching LinkedIn data via Proxycurl.")
|
33 |
+
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
|
34 |
+
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
|
35 |
+
response = requests.get(url, headers=headers)
|
36 |
+
if response.status_code == 200:
|
37 |
+
data = response.json()
|
38 |
+
self.bio = data.get("summary", "No bio available")
|
39 |
+
self.skills = data.get("skills", [])
|
40 |
+
self.experiences = data.get("experiences", [])
|
41 |
+
print("LinkedIn data fetched successfully.")
|
42 |
+
else:
|
43 |
+
print("Error: Unable to fetch LinkedIn profile. Using default bio.")
|
44 |
+
self.bio = "A professional with diverse experience."
|
45 |
+
self.skills = ["Adaptable", "Hardworking"]
|
46 |
+
self.experiences = ["Worked across various industries"]
|
47 |
+
|
48 |
# Reason and Act via LLM: Let the LLM control reasoning and actions dynamically
|
49 |
def autonomous_reasoning(self):
|
50 |
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
|
|
|
138 |
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
|
139 |
return self.generate_email()
|
140 |
|
141 |
+
# Fetch company URL using SERP API (same as before)
|
142 |
+
def fetch_company_url(self):
|
143 |
+
serp_api_key = os.getenv("SERP_API_KEY")
|
144 |
+
print(f"Fetching company URL for {self.company_name} using SERP API...")
|
145 |
+
serp_url = f"https://serpapi.com/search.json?q={self.company_name}&api_key={serp_api_key}&num=1"
|
146 |
+
response = requests.get(serp_url)
|
147 |
+
|
148 |
+
if response.status_code == 200:
|
149 |
+
serp_data = response.json()
|
150 |
+
if 'organic_results' in serp_data and len(serp_data['organic_results']) > 0:
|
151 |
+
self.company_url = serp_data['organic_results'][0]['link']
|
152 |
+
print(f"Found company URL: {self.company_url}")
|
153 |
+
else:
|
154 |
+
print("No URL found for the company via SERP API.")
|
155 |
+
self.company_url = None
|
156 |
+
else:
|
157 |
+
print(f"Error fetching company URL: {response.status_code}")
|
158 |
+
|
159 |
+
# Fetch company information via Firecrawl API using company URL (same as before)
|
160 |
+
def fetch_company_info_with_firecrawl(self, company_url):
|
161 |
+
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY")
|
162 |
+
print(f"Fetching company info for {company_url} using Firecrawl.")
|
163 |
+
headers = {"Authorization": f"Bearer {firecrawl_api_key}"}
|
164 |
+
firecrawl_url = "https://api.firecrawl.dev/v1/scrape"
|
165 |
+
data = {"url": company_url, "patterns": ["description", "about", "careers", "company overview"]}
|
166 |
+
|
167 |
+
response = requests.post(firecrawl_url, json=data, headers=headers)
|
168 |
+
if response.status_code == 200:
|
169 |
+
firecrawl_data = response.json()
|
170 |
+
self.company_info = firecrawl_data.get("description", "No detailed company info available.")
|
171 |
+
print(f"Company info fetched: {self.company_info}")
|
172 |
+
else:
|
173 |
+
print(f"Error: Unable to fetch company info via Firecrawl. Status code: {response.status_code}")
|
174 |
+
self.company_info = "A leading company in its field."
|
175 |
+
|
176 |
+
# Final Action: Generate the email using Groq Cloud LLM (same as before)
|
177 |
+
def generate_email(self):
|
178 |
+
print("Action: Generating the email using Groq Cloud LLM with the gathered information.")
|
179 |
+
|
180 |
+
prompt = f"""
|
181 |
+
Write a professional job application email applying for the {self.role} position at {self.company_name}.
|
182 |
+
|
183 |
+
The email should follow the "Start with Why" approach:
|
184 |
+
1. **Why**: Explain why the candidate is passionate about this role and company.
|
185 |
+
2. **How**: Highlight the candidate’s skills and experiences.
|
186 |
+
3. **What**: Provide examples of past achievements.
|
187 |
+
4. **Call to Action**: Request a meeting or discussion.
|
188 |
+
|
189 |
+
- LinkedIn bio: {self.bio}
|
190 |
+
- Skills: {', '.join(self.skills)}
|
191 |
+
- Experience: {', '.join([exp['title'] for exp in self.experiences])}
|
192 |
+
- Company information: {self.company_info}
|
193 |
+
|
194 |
+
Signature:
|
195 |
+
Best regards,
|
196 |
+
{self.user_name}
|
197 |
+
Email: {self.email}
|
198 |
+
Phone: {self.phone}
|
199 |
+
LinkedIn: {self.linkedin}
|
200 |
+
|
201 |
+
Limit the email to {self.word_limit} words.
|
202 |
+
"""
|
203 |
+
|
204 |
+
return self.send_request_to_llm(prompt)
|
205 |
|
206 |
# Main loop following ReAct pattern
|
207 |
def run(self):
|
208 |
self.fetch_linkedin_data()
|
209 |
return self.autonomous_reasoning()
|
210 |
|
211 |
+
# Gradio UI setup remains the same
|
212 |
def gradio_ui():
|
213 |
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
|
214 |
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
|