siddhartharya commited on
Commit
c4aa364
·
verified ·
1 Parent(s): f18b18e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +11 -34
app.py CHANGED
@@ -60,8 +60,11 @@ class AutonomousEmailAgent:
60
  print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
61
 
62
  reasoning_prompt = f"""
63
- You are an autonomous agent responsible for generating a job application email.
64
-
 
 
 
65
  Here’s the current data:
66
  - LinkedIn profile: {self.linkedin_url}
67
  - Company Name: {self.company_name}
@@ -70,11 +73,7 @@ class AutonomousEmailAgent:
70
  - Candidate's Skills: {', '.join(self.skills)}
71
  - Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
72
 
73
- Based on this data, decide if it is sufficient to generate the email. If some information is missing or insufficient, respond with:
74
- 1. "generate_email" to proceed with the email generation using available data.
75
- 2. "fallback" to use default values.
76
-
77
- After generating the email, reflect on whether the content aligns with the role and company and whether any improvements are needed. Respond clearly with one of the above options.
78
  """
79
 
80
  return self.send_request_to_llm(reasoning_prompt)
@@ -106,7 +105,7 @@ class AutonomousEmailAgent:
106
  if choices and "message" in choices[0]:
107
  content = choices[0]["message"]["content"]
108
  print(f"Content: {content}")
109
- return self.act_on_llm_instructions(content)
110
  else:
111
  print("Error: Unrecognized format in LLM response.")
112
  return "Error: Unrecognized response format."
@@ -117,33 +116,11 @@ class AutonomousEmailAgent:
117
  print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}")
118
  return "Error: Unable to generate response."
119
 
120
- # Function to act on the LLM's structured instructions
121
- def act_on_llm_instructions(self, reasoning_output):
122
- print(f"LLM Instruction: {reasoning_output}")
123
- instruction = reasoning_output.lower().strip()
124
-
125
- if "generate_email" in instruction:
126
- return self.generate_email()
127
-
128
- elif "fallback" in instruction:
129
- print("Action: Using fallback values for missing data.")
130
- return self.generate_email()
131
-
132
- else:
133
- print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
134
- return self.generate_email()
135
-
136
- # Generate email based on the collected data
137
- def generate_email(self):
138
- print("Generating email based on the provided and/or fallback data...")
139
  email_content = f"""
140
- Subject: Application for {self.role} at {self.company_name}
141
-
142
- Dear Hiring Manager,
143
-
144
- I am excited to apply for the {self.role} role at {self.company_name}. With a strong background in {self.bio}, I believe my skills in {', '.join(self.skills)} would make me a valuable addition to your team.
145
-
146
- Please find my LinkedIn profile for more details: {self.linkedin}
147
 
148
  Best regards,
149
  {self.user_name}
 
60
  print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
61
 
62
  reasoning_prompt = f"""
63
+ You are an AI agent tasked with generating a job application email using Simon Sinek's Start with Why model.
64
+ The email must begin with why the candidate is passionate about the role, then explain how their skills and
65
+ experience align with the company and role, and finally describe specific achievements that demonstrate their
66
+ capabilities.
67
+
68
  Here’s the current data:
69
  - LinkedIn profile: {self.linkedin_url}
70
  - Company Name: {self.company_name}
 
73
  - Candidate's Skills: {', '.join(self.skills)}
74
  - Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
75
 
76
+ Generate the email using this structure and make it compelling and tailored to the company and role.
 
 
 
 
77
  """
78
 
79
  return self.send_request_to_llm(reasoning_prompt)
 
105
  if choices and "message" in choices[0]:
106
  content = choices[0]["message"]["content"]
107
  print(f"Content: {content}")
108
+ return self.generate_email(content)
109
  else:
110
  print("Error: Unrecognized format in LLM response.")
111
  return "Error: Unrecognized response format."
 
116
  print(f"Error: Unable to connect to Groq Cloud LLM. Status Code: {response.status_code}")
117
  return "Error: Unable to generate response."
118
 
119
+ # Generate email based on the structured response
120
+ def generate_email(self, llm_response):
121
+ print("Generating email based on the structured response...")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  email_content = f"""
123
+ {llm_response}
 
 
 
 
 
 
124
 
125
  Best regards,
126
  {self.user_name}