File size: 5,044 Bytes
9ada6bf
 
 
 
b8778bd
9ada6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8778bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ada6bf
 
 
 
 
 
 
 
 
b8778bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9ada6bf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import requests
import openai
import gradio as gr
from swarm import Swarm, Agent

# Fetch API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")

# Function to fetch LinkedIn data using Proxycurl API
def fetch_linkedin_data(linkedin_url):
    headers = {'Authorization': f'Bearer {PROXYCURL_API_KEY}'}
    response = requests.get(f"https://api.proxycurl.com/v1/linkedin/{linkedin_url}", headers=headers)
    if response.status_code == 200:
        return response.json()
    else:
        return {"error": "Unable to fetch LinkedIn data"}

# Function to fetch company information using Firecrawl API
def fetch_company_info(company_url):
    headers = {'Authorization': f'Bearer {FIRECRAWL_API_KEY}'}
    response = requests.get(f"https://api.firecrawl.com/v1/scrape?url={company_url}", headers=headers)
    if response.status_code == 200:
        return response.json()
    else:
        return {"error": "Unable to fetch company information"}

# Function to structure the email using the "Start with Why" model
def structure_email(user_data, linkedin_info, company_info):
    why = f"I am passionate about {company_info.get('mission', 'your mission')} because it aligns with my experience as {linkedin_info.get('current_role', 'a professional')}."
    how = f"My skills in {user_data['role']} match the requirements and goals of your organization."
    what = f"I can bring my experience in {linkedin_info.get('skills', 'relevant skills')} to help achieve {company_info.get('goal', 'your company goals')}."
    structured_input = f"{why}\n\n{how}\n\n{what}"
    return structured_input

# Function to generate email content using Nvidia Nemotron LLM
def generate_email_content(api_key, prompt):
    openai.api_key = api_key
    response = openai.Completion.create(
        model="nemotron-70b",
        prompt=prompt,
        max_tokens=500
    )
    return response.choices[0].text

# Function to validate the generated email for professional tone and completeness
def validate_email(email_content):
    return "Why" in email_content and "How" in email_content and "What" in email_content

# Define Agent B - The agent responsible for processing and refining the email
def transfer_to_email_generation():
    return email_agent_b

# Define Agent A - The primary agent to initiate data collection and hand over to Agent B
email_agent_a = Agent(
    name="Data Collection Agent",
    instructions="Collect user inputs and relevant data (LinkedIn and company details).",
    functions=[transfer_to_email_generation]
)

# Define Agent B - The agent that structures and generates the email
email_agent_b = Agent(
    name="Email Generation Agent",
    instructions="Structure the email using the 'Start with Why' model and generate professional content.",
)

# Set up the Swarm client
client = Swarm()

# Main function that interacts with the agents using the Swarm framework
def run_agent(name, email, phone, linkedin_url, company_url, role):
    user_data = {
        "name": name,
        "email": email,
        "phone": phone,
        "linkedin_url": linkedin_url,
        "company_url": company_url,
        "role": role
    }

    # Step 1: Fetch LinkedIn and Company Data
    linkedin_info = fetch_linkedin_data(linkedin_url)
    company_info = fetch_company_info(company_url)
    if "error" in linkedin_info or "error" in company_info:
        return "Error fetching data. Please check the LinkedIn and company URLs."

    # Step 2: Use the Swarm framework to structure and generate the email
    messages = [{"role": "user", "content": "Initiate email generation."}]
    response = client.run(agent=email_agent_a, messages=messages)

    # Step 3: Agent B structures and refines the email using the provided data
    prompt = structure_email(user_data, linkedin_info, company_info)
    email_content = generate_email_content(OPENAI_API_KEY, prompt)

    # Validate the generated email content using the ReAct pattern (with a max of 3 iterations)
    for i in range(3):
        if validate_email(email_content):
            return email_content
        else:
            # Refine the prompt based on the feedback or iteration logic
            refined_prompt = f"Refine: {prompt}"
            email_content = generate_email_content(OPENAI_API_KEY, refined_prompt)

    return "Unable to generate a valid email after 3 attempts."

# Set up the Gradio interface
final_interface = gr.Interface(
    fn=run_agent,
    inputs=[
        gr.Textbox(label="Name"),
        gr.Textbox(label="Email"),
        gr.Textbox(label="Phone Number"),
        gr.Textbox(label="LinkedIn Profile URL"),
        gr.Textbox(label="Company URL or Name"),
        gr.Textbox(label="Role Being Applied For")
    ],
    outputs="text",
    title="Email Writing AI Agent",
    description="Autonomously generate a professional email tailored to the job application."
)

if __name__ == "__main__":
    final_interface.launch()