siddhartharya's picture
Update app.py
be28632 verified
raw
history blame
9.49 kB
import os
import requests
import gradio as gr
from openai import OpenAI
import logging
# Configure logging
logging.basicConfig(level=logging.INFO)
# Fetch API keys from environment variables
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
PROXYCURL_API_KEY = os.getenv("PROXYCURL_API_KEY")
FIRECRAWL_API_KEY = os.getenv("FIRECRAWL_API_KEY")
# Function to sanitize data by ensuring it's safe and clean for use
def sanitize_data(data, default_value=""):
return data.strip() if isinstance(data, str) and data.strip() else default_value
# Function to fetch LinkedIn data using the Proxycurl API
def fetch_linkedin_data(linkedin_url):
api_key = os.getenv("PROXYCURL_API_KEY")
headers = {'Authorization': f'Bearer {api_key}'}
api_endpoint = 'https://nubela.co/proxycurl/api/v2/linkedin'
logging.info("Fetching LinkedIn data...")
try:
response = requests.get(api_endpoint,
params={'url': linkedin_url},
headers=headers,
timeout=10)
if response.status_code == 200:
logging.info("LinkedIn data fetched successfully.")
return response.json()
else:
logging.error(f"Error fetching LinkedIn data: {response.text}")
return {"error": f"Error fetching LinkedIn data: {response.text}"}
except Exception as e:
logging.error(f"Exception during LinkedIn data fetch: {e}")
return {"error": f"Exception during LinkedIn data fetch: {e}"}
# Function to fetch company information using Firecrawl API
def fetch_company_info(company_url):
api_key = os.getenv("FIRECRAWL_API_KEY")
headers = {
'Authorization': f'Bearer {api_key}',
'Content-Type': 'application/json'
}
api_endpoint = 'https://api.firecrawl.dev/v1/crawl'
data = {
"url": company_url,
"limit": 100,
"scrapeOptions": {
"formats": ["markdown", "html"]
}
}
logging.info("Fetching company information...")
try:
response = requests.post(api_endpoint, json=data, headers=headers, timeout=15)
if response.status_code == 200:
logging.info("Company information fetched successfully.")
return response.json()
else:
logging.error(f"Error fetching company information: {response.text}")
return {"error": f"Error fetching company information: {response.text}"}
except Exception as e:
logging.error(f"Exception during company info fetch: {e}")
return {"error": f"Exception during company info fetch: {e}"}
# Function to structure the email dynamically based on inputs and fetched data
def structure_email(user_data, linkedin_info, company_info):
# Sanitize and extract the required information
linkedin_role = sanitize_data(linkedin_info.get('current_role', user_data['role']))
linkedin_skills = sanitize_data(linkedin_info.get('skills', 'various relevant skills'))
linkedin_industry = sanitize_data(linkedin_info.get('industry', 'the industry'))
company_name = sanitize_data(user_data['company_url'] or company_info.get('company_name', 'the company'))
company_mission = sanitize_data(company_info.get('mission', f"{company_name}'s mission"))
company_goal = sanitize_data(company_info.get('goal', 'achieving excellence'))
# Build the email directly with the available and sanitized information
email_body = f"Dear Hiring Manager,\n\n"
email_body += f"I am writing to express my interest in the {sanitize_data(user_data['role'])} position at {company_name}. "
email_body += f"I am particularly drawn to {company_name}'s mission to {company_mission}, which aligns with my passion and expertise in {linkedin_industry}. "
email_body += f"As a {linkedin_role}, I have developed skills in {linkedin_skills}, which I believe are highly relevant to the requirements of this role.\n\n"
email_body += f"I am confident that my background and expertise in {linkedin_skills} can contribute to achieving {company_goal}. "
email_body += f"My experience in similar roles has prepared me to make an immediate and meaningful impact on your team, and I am excited about the opportunity to bring my expertise to {company_name}.\n\n"
email_body += f"I would appreciate the opportunity to discuss how my background and skills align with the needs of your organization. "
email_body += "Thank you for your time and consideration. I look forward to the possibility of contributing to your team.\n\n"
email_body += f"Best regards,\n{sanitize_data(user_data['name'])}"
return email_body
# Function to validate the generated email for completeness and professionalism
def validate_email(email_content):
logging.info("Validating email content...")
logging.info(f"Email Content for Validation: {email_content}")
# Check if essential elements exist in the email content
return all(keyword in email_content for keyword in ["interest", "skills", "experience", "contribute", "Best regards"])
# Function to generate email content using Nvidia Nemotron LLM (non-streaming for simplicity)
def generate_email_content(api_key, prompt):
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=api_key
)
logging.info("Generating email content...")
try:
response = client.chat.completions.create(
model="nvidia/llama-3.1-nemotron-70b-instruct",
messages=[
{"role": "user", "content": prompt}
],
temperature=0.5,
top_p=1,
max_tokens=1024,
stream=False
)
if hasattr(response, 'choices') and len(response.choices) > 0:
email_content = response.choices[0].message.content
logging.info("Email content generated successfully.")
return email_content
else:
logging.error("Error: No choices found in the response.")
return "Error generating email content: No valid choices."
except Exception as e:
logging.error(f"Error generating email content: {e}")
return "Error generating email content."
# Custom Agent class to simulate behavior similar to OpenAI's Swarm framework
class Agent:
def __init__(self, name, instructions, user_data):
self.name = name
self.instructions = instructions
self.user_data = user_data
def act(self):
if self.name == "Data Collection Agent":
linkedin_info = fetch_linkedin_data(self.user_data['linkedin_url'])
company_info = fetch_company_info(self.user_data['company_url'])
return linkedin_info, company_info
elif self.name == "Email Generation Agent":
user_data = self.user_data['user_data']
linkedin_info = self.user_data['linkedin_info']
company_info = self.user_data['company_info']
email_content = structure_email(user_data, linkedin_info, company_info)
return email_content
# Simulated Swarm class to manage agents
class Swarm:
def __init__(self):
self.agents = []
def add_agent(self, agent):
self.agents.append(agent)
def run(self):
for agent in self.agents:
if agent.name == "Data Collection Agent":
linkedin_info, company_info = agent.act()
if "error" in linkedin_info or "error" in company_info:
return "Error fetching data. Please check the LinkedIn and company URLs."
return linkedin_info, company_info
# Function that integrates the agents and manages iterations
def run_agent(name, email, phone, linkedin_url, company_url, role):
user_data = {
"name": name,
"email": email,
"phone": phone,
"linkedin_url": linkedin_url,
"company_url": company_url,
"role": role
}
email_swarm = Swarm()
data_collection_agent = Agent("Data Collection Agent", "Collect user inputs and relevant data", user_data)
email_swarm.add_agent(data_collection_agent)
linkedin_info, company_info = email_swarm.run()
if isinstance(linkedin_info, str):
return linkedin_info
agent_data = {
"user_data": user_data,
"linkedin_info": linkedin_info,
"company_info": company_info
}
email_agent = Agent("Email Generation Agent", "Generate the email content", agent_data)
email_content = email_agent.act()
for i in range(3):
if validate_email(email_content):
return email_content
else:
refined_prompt = f"Refine: {structure_email(user_data, linkedin_info, company_info)}"
email_content = generate_email_content(OPENAI_API_KEY, refined_prompt)
return "Unable to generate a valid email after 3 attempts."
# Set up the Gradio interface
final_interface = gr.Interface(
fn=run_agent,
inputs=[
gr.Textbox(label="Name"),
gr.Textbox(label="Email"),
gr.Textbox(label="Phone Number"),
gr.Textbox(label="LinkedIn Profile URL"),
gr.Textbox(label="Company URL or Name"),
gr.Textbox(label="Role Being Applied For")
],
outputs="text",
title="Email Writing AI Agent",
description="Autonomously generate a professional email tailored to the job application."
)
if __name__ == "__main__":
final_interface.launch()