siddqamar's picture
Update app.py
48103d0 verified
raw
history blame
1.46 kB
import gradio as gr
import whisper
import os
model = whisper.load_model("base")
def transcribe_audio(audio_file):
# Check if file is uploaded
if audio_file is None:
return "Error: Please upload an audio file.", None
# Get the file path - in newer Gradio versions, audio_file might be a string path directly
file_path = audio_file if isinstance(audio_file, str) else audio_file.name
# Check file size (25MB limit)
if os.path.getsize(file_path) > 25 * 1024 * 1024:
return "Error: File size exceeds 25MB limit.", None
try:
result = model.transcribe(file_path)
output_filename = os.path.splitext(os.path.basename(file_path))[0] + ".txt"
with open(output_filename, "w") as text_file:
text_file.write(result["text"])
return result["text"], output_filename
except Exception as e:
return f"Error during transcription: {str(e)}", None
iface = gr.Interface(
fn=transcribe_audio,
inputs=gr.File(label="Upload Audio File (Max 25MB)", file_types=["audio"]),
outputs=[
gr.Textbox(label="Transcription"),
gr.File(label="Download Transcript")
],
title="Free Transcript Maker",
description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly."
)
if __name__ == "__main__":
iface.launch()