import torch import gradio as gr import yt_dlp as youtube_dl from transformers import WhisperProcessor, WhisperForConditionalGeneration import tempfile import os import time # Constants MODEL_NAME = "openai/whisper-large-v3" BATCH_SIZE = 8 FILE_LIMIT_MB = 25 # File size limit in MB YT_LENGTH_LIMIT_S = 3600 # 1 hour YouTube file limit # Device configuration (CUDA if available) device = 0 if torch.cuda.is_available() else "cpu" # Load Whisper model and processor processor = WhisperProcessor.from_pretrained(MODEL_NAME) model = WhisperForConditionalGeneration.from_pretrained(MODEL_NAME).to(device) def transcribe_audio(inputs): """Transcribe audio using Whisper model.""" if inputs is None: raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.") # Check file size (max 25MB) if os.path.getsize(inputs) > FILE_LIMIT_MB * 1024 * 1024: raise gr.Error(f"File size exceeds {FILE_LIMIT_MB}MB limit.") # Preprocess audio input audio_input = processor(inputs, return_tensors="pt", sampling_rate=16000).to(device) # Generate transcription predicted_ids = model.generate(audio_input.input_values, max_length=448) # Decode the transcription output transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0] return transcription def _return_yt_html_embed(yt_url): """Return YouTube embed HTML for display.""" video_id = yt_url.split("?v=")[-1] html_embed = f'
' return html_embed def download_yt_audio(yt_url, filename): """Download audio from a YouTube URL.""" info_loader = youtube_dl.YoutubeDL() try: info = info_loader.extract_info(yt_url, download=False) except youtube_dl.utils.DownloadError as err: raise gr.Error(f"Download error: {str(err)}") # Check video length file_length_s = int(info.get("duration", 0)) if file_length_s > YT_LENGTH_LIMIT_S: yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) raise gr.Error(f"Maximum YouTube video length is {yt_length_limit_hms}, but video is {file_length_hms}.") # Download the video ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} with youtube_dl.YoutubeDL(ydl_opts) as ydl: try: ydl.download([yt_url]) except youtube_dl.utils.ExtractorError as err: raise gr.Error(f"Error while downloading video: {str(err)}") def yt_transcribe(yt_url): """Transcribe YouTube video using Whisper model.""" html_embed = _return_yt_html_embed(yt_url) with tempfile.TemporaryDirectory() as tmpdirname: filepath = os.path.join(tmpdirname, "video.mp4") download_yt_audio(yt_url, filepath) with open(filepath, "rb") as file: audio_input = file.read() # Process and transcribe transcription = transcribe_audio(audio_input) return html_embed, transcription # Create Gradio interface demo = gr.Blocks() # Microphone transcription interface mf_transcribe = gr.Interface( fn=transcribe_audio, inputs=[ gr.inputs.Audio(source="microphone", type="filepath", optional=True), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Transcription (Microphone)", description="Transcribe audio from your microphone. File size limit is 25MB." ) # File upload transcription interface file_transcribe = gr.Interface( fn=transcribe_audio, inputs=[ gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Audio file"), ], outputs="text", layout="horizontal", theme="huggingface", title="Whisper Transcription (File)", description="Upload an audio file to transcribe. File size limit is 25MB." ) # YouTube video transcription interface yt_transcribe = gr.Interface( fn=yt_transcribe, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Paste YouTube URL", label="YouTube URL"), ], outputs=["html", "text"], layout="horizontal", theme="huggingface", title="Free Transcript Maker", description="Upload an audio file (WAV, MP3, etc.) up to 25MB to get its transcription. The transcript will be displayed and available for download. Please use responsibly." ) with demo: gr.TabbedInterface([mf_transcribe, file_transcribe, yt_transcribe], ["Microphone", "Audio file", "YouTube"]) demo.launch(enable_queue=True)