File size: 4,346 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import os
import sys

import cv2
import numpy as np
import paddle
from paddleseg.cvlibs import manager, Config
from paddleseg.utils import get_sys_env, logger

LOCAL_PATH = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(LOCAL_PATH, '..'))

manager.BACKBONES._components_dict.clear()
manager.TRANSFORMS._components_dict.clear()

import ppmatting
from ppmatting.core import predict
from ppmatting.utils import get_image_list, estimate_foreground_ml


def parse_args():
    parser = argparse.ArgumentParser(
        description='PP-HumanSeg inference for video')
    parser.add_argument(
        "--config",
        dest="cfg",
        help="The config file.",
        default=None,
        type=str,
        required=True)
    parser.add_argument(
        '--model_path',
        dest='model_path',
        help='The path of model for prediction',
        type=str,
        default=None)
    parser.add_argument(
        '--image_path',
        dest='image_path',
        help='Image including human',
        type=str,
        default=None)
    parser.add_argument(
        '--trimap_path',
        dest='trimap_path',
        help='The path of trimap',
        type=str,
        default=None)
    parser.add_argument(
        '--background',
        dest='background',
        help='Background for replacing. It is a string which specifies the background color (r,g,b,w) or a path to background image. If not specified, a green background is used.',
        type=str,
        default=None)
    parser.add_argument(
        '--save_dir',
        dest='save_dir',
        help='The directory for saving the inference results',
        type=str,
        default='./output')
    parser.add_argument(
        '--fg_estimate',
        default=True,
        type=eval,
        choices=[True, False],
        help='Whether to estimate foreground when predicting.')

    return parser.parse_args()


def main(args):
    env_info = get_sys_env()
    place = 'gpu' if env_info['Paddle compiled with cuda'] and env_info[
        'GPUs used'] else 'cpu'
    paddle.set_device(place)
    if not args.cfg:
        raise RuntimeError('No configuration file specified.')

    cfg = Config(args.cfg)

    msg = '\n---------------Config Information---------------\n'
    msg += str(cfg)
    msg += '------------------------------------------------'
    logger.info(msg)

    model = cfg.model
    transforms = ppmatting.transforms.Compose(cfg.val_transforms)

    alpha, fg = predict(
        model,
        model_path=args.model_path,
        transforms=transforms,
        image_list=[args.image_path],
        trimap_list=[args.trimap_path],
        save_dir=args.save_dir,
        fg_estimate=args.fg_estimate)

    img_ori = cv2.imread(args.image_path)
    bg = get_bg(args.background, img_ori.shape)
    alpha = alpha / 255.0
    alpha = alpha[:, :, np.newaxis]
    com = alpha * fg + (1 - alpha) * bg
    com = com.astype('uint8')
    com_save_path = os.path.join(args.save_dir,
                                 os.path.basename(args.image_path))
    cv2.imwrite(com_save_path, com)


def get_bg(background, img_shape):
    bg = np.zeros(img_shape)
    if background == 'r':
        bg[:, :, 2] = 255
    elif background is None or background == 'g':
        bg[:, :, 1] = 255
    elif background == 'b':
        bg[:, :, 0] = 255
    elif background == 'w':
        bg[:, :, :] = 255

    elif not os.path.exists(background):
        raise Exception('The --background is not existed: {}'.format(
            background))
    else:
        bg = cv2.imread(background)
        bg = cv2.resize(bg, (img_shape[1], img_shape[0]))
    return bg


if __name__ == "__main__":
    args = parse_args()
    main(args)