File size: 4,776 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import numpy as np
from PIL import Image

from paddleseg.datasets import Dataset
from paddleseg.utils.download import download_file_and_uncompress
from paddleseg.utils import seg_env
from paddleseg.cvlibs import manager
from paddleseg.transforms import Compose
import paddleseg.transforms.functional as F

URL = "http://data.csail.mit.edu/places/ADEchallenge/ADEChallengeData2016.zip"


@manager.DATASETS.add_component
class ADE20K(Dataset):
    """
    ADE20K dataset `http://sceneparsing.csail.mit.edu/`.

    Args:
        transforms (list): A list of image transformations.
        dataset_root (str, optional): The ADK20K dataset directory. Default: None.
        mode (str, optional): A subset of the entire dataset. It should be one of ('train', 'val'). Default: 'train'.
        edge (bool, optional): Whether to compute edge while training. Default: False
    """
    NUM_CLASSES = 150

    def __init__(self, transforms, dataset_root=None, mode='train', edge=False):
        self.dataset_root = dataset_root
        self.transforms = Compose(transforms)
        mode = mode.lower()
        self.mode = mode
        self.file_list = list()
        self.num_classes = self.NUM_CLASSES
        self.ignore_index = 255
        self.edge = edge

        if mode not in ['train', 'val']:
            raise ValueError(
                "`mode` should be one of ('train', 'val') in ADE20K dataset, but got {}."
                .format(mode))

        if self.transforms is None:
            raise ValueError("`transforms` is necessary, but it is None.")

        if self.dataset_root is None:
            self.dataset_root = download_file_and_uncompress(
                url=URL,
                savepath=seg_env.DATA_HOME,
                extrapath=seg_env.DATA_HOME,
                extraname='ADEChallengeData2016')
        elif not os.path.exists(self.dataset_root):
            self.dataset_root = os.path.normpath(self.dataset_root)
            savepath, extraname = self.dataset_root.rsplit(
                sep=os.path.sep, maxsplit=1)
            self.dataset_root = download_file_and_uncompress(
                url=URL,
                savepath=savepath,
                extrapath=savepath,
                extraname=extraname)

        if mode == 'train':
            img_dir = os.path.join(self.dataset_root, 'images/training')
            label_dir = os.path.join(self.dataset_root, 'annotations/training')
        elif mode == 'val':
            img_dir = os.path.join(self.dataset_root, 'images/validation')
            label_dir = os.path.join(self.dataset_root,
                                     'annotations/validation')
        img_files = os.listdir(img_dir)
        label_files = [i.replace('.jpg', '.png') for i in img_files]
        for i in range(len(img_files)):
            img_path = os.path.join(img_dir, img_files[i])
            label_path = os.path.join(label_dir, label_files[i])
            self.file_list.append([img_path, label_path])

    def __getitem__(self, idx):
        data = {}
        data['trans_info'] = []
        image_path, label_path = self.file_list[idx]
        data['img'] = image_path
        data['gt_fields'] = [
        ]  # If key in gt_fields, the data[key] have transforms synchronous.

        if self.mode == 'val':
            data = self.transforms(data)
            label = np.asarray(Image.open(label_path))
            # The class 0 is ignored. And it will equal to 255 after
            # subtracted 1, because the dtype of label is uint8.
            label = label - 1
            label = label[np.newaxis, :, :]
            data['label'] = label
            return data
        else:
            data['label'] = label_path
            data['gt_fields'].append('label')
            data = self.transforms(data)
            data['label'] = data['label'] - 1
            # Recover the ignore pixels adding by transform
            data['label'][data['label'] == 254] = 255
            if self.edge:
                edge_mask = F.mask_to_binary_edge(
                    label, radius=2, num_classes=self.num_classes)
                data['edge'] = edge_mask
            return data