Spaces:
Configuration error
Configuration error
File size: 6,428 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg import utils
import numpy as np
@manager.MODELS.add_component
class AttentionUNet(nn.Layer):
"""
The Attention-UNet implementation based on PaddlePaddle.
As mentioned in the original paper, author proposes a novel attention gate (AG)
that automatically learns to focus on target structures of varying shapes and sizes.
Models trained with AGs implicitly learn to suppress irrelevant regions in an input image while
highlighting salient features useful for a specific task.
The original article refers to
Oktay, O, et, al. "Attention u-net: Learning where to look for the pancreas."
(https://arxiv.org/pdf/1804.03999.pdf).
Args:
num_classes (int): The unique number of target classes.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self, num_classes, pretrained=None):
super().__init__()
n_channels = 3
self.encoder = Encoder(n_channels, [64, 128, 256, 512])
filters = np.array([64, 128, 256, 512, 1024])
self.up5 = UpConv(ch_in=filters[4], ch_out=filters[3])
self.att5 = AttentionBlock(
F_g=filters[3], F_l=filters[3], F_out=filters[2])
self.up_conv5 = ConvBlock(ch_in=filters[4], ch_out=filters[3])
self.up4 = UpConv(ch_in=filters[3], ch_out=filters[2])
self.att4 = AttentionBlock(
F_g=filters[2], F_l=filters[2], F_out=filters[1])
self.up_conv4 = ConvBlock(ch_in=filters[3], ch_out=filters[2])
self.up3 = UpConv(ch_in=filters[2], ch_out=filters[1])
self.att3 = AttentionBlock(
F_g=filters[1], F_l=filters[1], F_out=filters[0])
self.up_conv3 = ConvBlock(ch_in=filters[2], ch_out=filters[1])
self.up2 = UpConv(ch_in=filters[1], ch_out=filters[0])
self.att2 = AttentionBlock(
F_g=filters[0], F_l=filters[0], F_out=filters[0] // 2)
self.up_conv2 = ConvBlock(ch_in=filters[1], ch_out=filters[0])
self.conv_1x1 = nn.Conv2D(
filters[0], num_classes, kernel_size=1, stride=1, padding=0)
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
x5, (x1, x2, x3, x4) = self.encoder(x)
d5 = self.up5(x5)
x4 = self.att5(g=d5, x=x4)
d5 = paddle.concat([x4, d5], axis=1)
d5 = self.up_conv5(d5)
d4 = self.up4(d5)
x3 = self.att4(g=d4, x=x3)
d4 = paddle.concat((x3, d4), axis=1)
d4 = self.up_conv4(d4)
d3 = self.up3(d4)
x2 = self.att3(g=d3, x=x2)
d3 = paddle.concat((x2, d3), axis=1)
d3 = self.up_conv3(d3)
d2 = self.up2(d3)
x1 = self.att2(g=d2, x=x1)
d2 = paddle.concat((x1, d2), axis=1)
d2 = self.up_conv2(d2)
logit = self.conv_1x1(d2)
logit_list = [logit]
return logit_list
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class AttentionBlock(nn.Layer):
def __init__(self, F_g, F_l, F_out):
super().__init__()
self.W_g = nn.Sequential(
nn.Conv2D(
F_g, F_out, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2D(F_out))
self.W_x = nn.Sequential(
nn.Conv2D(
F_l, F_out, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2D(F_out))
self.psi = nn.Sequential(
nn.Conv2D(
F_out, 1, kernel_size=1, stride=1, padding=0),
nn.BatchNorm2D(1),
nn.Sigmoid())
self.relu = nn.ReLU()
def forward(self, g, x):
g1 = self.W_g(g)
x1 = self.W_x(x)
psi = self.relu(g1 + x1)
psi = self.psi(psi)
res = x * psi
return res
class UpConv(nn.Layer):
def __init__(self, ch_in, ch_out):
super().__init__()
self.up = nn.Sequential(
nn.Upsample(
scale_factor=2, mode="bilinear"),
nn.Conv2D(
ch_in, ch_out, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2D(ch_out),
nn.ReLU())
def forward(self, x):
return self.up(x)
class Encoder(nn.Layer):
def __init__(self, input_channels, filters):
super().__init__()
self.double_conv = nn.Sequential(
layers.ConvBNReLU(input_channels, 64, 3),
layers.ConvBNReLU(64, 64, 3))
down_channels = filters
self.down_sample_list = nn.LayerList([
self.down_sampling(channel, channel * 2)
for channel in down_channels
])
def down_sampling(self, in_channels, out_channels):
modules = []
modules.append(nn.MaxPool2D(kernel_size=2, stride=2))
modules.append(layers.ConvBNReLU(in_channels, out_channels, 3))
modules.append(layers.ConvBNReLU(out_channels, out_channels, 3))
return nn.Sequential(*modules)
def forward(self, x):
short_cuts = []
x = self.double_conv(x)
for down_sample in self.down_sample_list:
short_cuts.append(x)
x = down_sample(x)
return x, short_cuts
class ConvBlock(nn.Layer):
def __init__(self, ch_in, ch_out):
super(ConvBlock, self).__init__()
self.conv = nn.Sequential(
nn.Conv2D(
ch_in, ch_out, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2D(ch_out),
nn.ReLU(),
nn.Conv2D(
ch_out, ch_out, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2D(ch_out),
nn.ReLU())
def forward(self, x):
return self.conv(x)
|