File size: 9,657 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg.models import layers


class AttentionBlock(nn.Layer):
    """General self-attention block/non-local block.

    The original article refers to refer to https://arxiv.org/abs/1706.03762.
    Args:
        key_in_channels (int): Input channels of key feature.
        query_in_channels (int): Input channels of query feature.
        channels (int): Output channels of key/query transform.
        out_channels (int): Output channels.
        share_key_query (bool): Whether share projection weight between key
            and query projection.
        query_downsample (nn.Module): Query downsample module.
        key_downsample (nn.Module): Key downsample module.
        key_query_num_convs (int): Number of convs for key/query projection.
        value_out_num_convs (int): Number of convs for value projection.
        key_query_norm (bool): Whether to use BN for key/query projection.
        value_out_norm (bool): Whether to use BN for value projection.
        matmul_norm (bool): Whether normalize attention map with sqrt of
            channels
        with_out (bool): Whether use out projection.
    """

    def __init__(self, key_in_channels, query_in_channels, channels,
                 out_channels, share_key_query, query_downsample,
                 key_downsample, key_query_num_convs, value_out_num_convs,
                 key_query_norm, value_out_norm, matmul_norm, with_out):
        super(AttentionBlock, self).__init__()
        if share_key_query:
            assert key_in_channels == query_in_channels
        self.with_out = with_out
        self.key_in_channels = key_in_channels
        self.query_in_channels = query_in_channels
        self.out_channels = out_channels
        self.channels = channels
        self.share_key_query = share_key_query
        self.key_project = self.build_project(
            key_in_channels,
            channels,
            num_convs=key_query_num_convs,
            use_conv_module=key_query_norm)
        if share_key_query:
            self.query_project = self.key_project
        else:
            self.query_project = self.build_project(
                query_in_channels,
                channels,
                num_convs=key_query_num_convs,
                use_conv_module=key_query_norm)

        self.value_project = self.build_project(
            key_in_channels,
            channels if self.with_out else out_channels,
            num_convs=value_out_num_convs,
            use_conv_module=value_out_norm)

        if self.with_out:
            self.out_project = self.build_project(
                channels,
                out_channels,
                num_convs=value_out_num_convs,
                use_conv_module=value_out_norm)
        else:
            self.out_project = None

        self.query_downsample = query_downsample
        self.key_downsample = key_downsample
        self.matmul_norm = matmul_norm

    def build_project(self, in_channels, channels, num_convs, use_conv_module):
        if use_conv_module:
            convs = [
                layers.ConvBNReLU(
                    in_channels=in_channels,
                    out_channels=channels,
                    kernel_size=1,
                    bias_attr=False)
            ]
            for _ in range(num_convs - 1):
                convs.append(
                    layers.ConvBNReLU(
                        in_channels=channels,
                        out_channels=channels,
                        kernel_size=1,
                        bias_attr=False))
        else:
            convs = [nn.Conv2D(in_channels, channels, 1)]
            for _ in range(num_convs - 1):
                convs.append(nn.Conv2D(channels, channels, 1))

        if len(convs) > 1:
            convs = nn.Sequential(*convs)
        else:
            convs = convs[0]
        return convs

    def forward(self, query_feats, key_feats):
        query_shape = paddle.shape(query_feats)
        query = self.query_project(query_feats)
        if self.query_downsample is not None:
            query = self.query_downsample(query)
        query = query.flatten(2).transpose([0, 2, 1])

        key = self.key_project(key_feats)
        value = self.value_project(key_feats)

        if self.key_downsample is not None:
            key = self.key_downsample(key)
            value = self.key_downsample(value)

        key = key.flatten(2)
        value = value.flatten(2).transpose([0, 2, 1])
        sim_map = paddle.matmul(query, key)
        if self.matmul_norm:
            sim_map = (self.channels**-0.5) * sim_map
        sim_map = F.softmax(sim_map, axis=-1)

        context = paddle.matmul(sim_map, value)
        context = paddle.transpose(context, [0, 2, 1])

        context = paddle.reshape(
            context, [0, self.out_channels, query_shape[2], query_shape[3]])

        if self.out_project is not None:
            context = self.out_project(context)
        return context


class DualAttentionModule(nn.Layer):
    """
    Dual attention module.

    Args:
        in_channels (int): The number of input channels.
        out_channels (int): The number of output channels.
    """

    def __init__(self, in_channels, out_channels):
        super().__init__()
        inter_channels = in_channels // 4

        self.channel_conv = layers.ConvBNReLU(in_channels, inter_channels, 1)
        self.position_conv = layers.ConvBNReLU(in_channels, inter_channels, 1)
        self.pam = PAM(inter_channels)
        self.cam = CAM(inter_channels)
        self.conv1 = layers.ConvBNReLU(inter_channels, inter_channels, 3)
        self.conv2 = layers.ConvBNReLU(inter_channels, inter_channels, 3)
        self.conv3 = layers.ConvBNReLU(inter_channels, out_channels, 3)

    def forward(self, feats):
        channel_feats = self.channel_conv(feats)
        channel_feats = self.cam(channel_feats)
        channel_feats = self.conv1(channel_feats)

        position_feats = self.position_conv(feats)
        position_feats = self.pam(position_feats)
        position_feats = self.conv2(position_feats)

        feats_sum = position_feats + channel_feats
        out = self.conv3(feats_sum)
        return out


class PAM(nn.Layer):
    """
    Position attention module.
    Args:
        in_channels (int): The number of input channels.
    """

    def __init__(self, in_channels):
        super().__init__()
        mid_channels = in_channels // 8
        self.mid_channels = mid_channels
        self.in_channels = in_channels

        self.query_conv = nn.Conv2D(in_channels, mid_channels, 1, 1)
        self.key_conv = nn.Conv2D(in_channels, mid_channels, 1, 1)
        self.value_conv = nn.Conv2D(in_channels, in_channels, 1, 1)

        self.gamma = self.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=nn.initializer.Constant(0))

    def forward(self, x):
        x_shape = paddle.shape(x)

        # query: n, h * w, c1
        query = self.query_conv(x)
        query = paddle.reshape(query, (0, self.mid_channels, -1))
        query = paddle.transpose(query, (0, 2, 1))

        # key: n, c1, h * w
        key = self.key_conv(x)
        key = paddle.reshape(key, (0, self.mid_channels, -1))

        # sim: n, h * w, h * w
        sim = paddle.bmm(query, key)
        sim = F.softmax(sim, axis=-1)

        value = self.value_conv(x)
        value = paddle.reshape(value, (0, self.in_channels, -1))
        sim = paddle.transpose(sim, (0, 2, 1))

        # feat: from (n, c2, h * w) -> (n, c2, h, w)
        feat = paddle.bmm(value, sim)
        feat = paddle.reshape(feat,
                              (0, self.in_channels, x_shape[2], x_shape[3]))

        out = self.gamma * feat + x
        return out


class CAM(nn.Layer):
    """
    Channel attention module.
    Args:
        in_channels (int): The number of input channels.
    """

    def __init__(self, channels):
        super().__init__()

        self.channels = channels
        self.gamma = self.create_parameter(
            shape=[1],
            dtype='float32',
            default_initializer=nn.initializer.Constant(0))

    def forward(self, x):
        x_shape = paddle.shape(x)
        # query: n, c, h * w
        query = paddle.reshape(x, (0, self.channels, -1))
        # key: n, h * w, c
        key = paddle.reshape(x, (0, self.channels, -1))
        key = paddle.transpose(key, (0, 2, 1))

        # sim: n, c, c
        sim = paddle.bmm(query, key)
        # The danet author claims that this can avoid gradient divergence
        sim = paddle.max(sim, axis=-1, keepdim=True).tile(
            [1, 1, self.channels]) - sim
        sim = F.softmax(sim, axis=-1)

        # feat: from (n, c, h * w) to (n, c, h, w)
        value = paddle.reshape(x, (0, self.channels, -1))
        feat = paddle.bmm(sim, value)
        feat = paddle.reshape(feat, (0, self.channels, x_shape[2], x_shape[3]))

        out = self.gamma * feat + x
        return out