Spaces:
Configuration error
Configuration error
File size: 6,446 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class PointCrossEntropyLoss(nn.Layer):
"""
Implements the point cross entropy loss function.
The original article refers to
Kirillov A, Wu Y, He K, et al. "PointRend: Image Segmentation As Rendering."
(https://arxiv.org/abs/1912.08193).
Args:
weight (tuple|list|ndarray|Tensor, optional): A manual rescaling weight
given to each class. Its length must be equal to the number of classes.
Default ``None``.
ignore_index (int64, optional): Specifies a target value that is ignored
and does not contribute to the input gradient. Default ``255``.
top_k_percent_pixels (float, optional): the value lies in [0.0, 1.0]. When its value < 1.0, only compute the loss for
the top k percent pixels (e.g., the top 20% pixels). This is useful for hard pixel mining. Default ``1.0``.
data_format (str, optional): The tensor format to use, 'NCHW' or 'NHWC'. Default ``'NCHW'``.
"""
def __init__(self,
weight=None,
ignore_index=255,
top_k_percent_pixels=1.0,
data_format='NCHW',
align_corners=False):
super(PointCrossEntropyLoss, self).__init__()
if weight is not None:
weight = paddle.to_tensor(weight, dtype='float32')
self.weight = weight
self.ignore_index = ignore_index
self.top_k_percent_pixels = top_k_percent_pixels
self.EPS = 1e-8
self.data_format = data_format
self.align_corners = align_corners
def forward(self, logits, label, semantic_weights=None):
"""
Forward computation.
Args:
logits (Tensor): Logit tensor, the data type is float32, float64. Shape is
(logit,points). logit'shape: [N, C, point_num]. logit'shape:[N, point_num, 2], where C is number of classes.
label (Tensor): Label tensor, the data type is int64. Shape is (N), where each
value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is
(N, D1, D2,..., Dk), k >= 1.
semantic_weights (Tensor, optional): Weights about loss for each pixels, shape is the same as label. Default: None.
"""
# for loss
logit, points = logits # [N, C, point_num],[N, point_num, 2]
label = label.unsqueeze(1) # [N,1,H,W]
label = point_sample(
label.astype('float32'),
points,
mode='nearest',
align_corners=self.align_corners) # [N, 1, point_num]
label = paddle.squeeze(label, axis=1).astype('int64') # [N, xx]
channel_axis = 1 if self.data_format == 'NCHW' else -1
if self.weight is not None and logit.shape[channel_axis] != len(
self.weight):
raise ValueError(
'The number of weights = {} must be the same as the number of classes = {}.'
.format(len(self.weight), logit.shape[1]))
logit = paddle.transpose(logit, [0, 2, 1])
no_ignore_label = label
#no_ignore_label[label==self.ignore_index] = 0
loss = F.cross_entropy(
logit,
no_ignore_label,
ignore_index=self.ignore_index,
reduction='none')
mask = label != self.ignore_index
mask = paddle.cast(mask, 'float32')
loss = loss * mask
if semantic_weights is not None:
loss = loss * semantic_weights
if self.weight is not None:
_one_hot = F.one_hot(label, logit.shape[-1])
_one_hot_weight = _one_hot * self.weight
loss = loss * _one_hot_weight.argmax(-1)
coef = paddle.sum(_one_hot_weight, axis=-1)
#coef = paddle.ones_like(label)
else:
coef = paddle.ones_like(label)
label.stop_gradient = True
mask.stop_gradient = True
if self.top_k_percent_pixels == 1.0:
avg_loss = paddle.mean(loss) / (paddle.mean(mask * coef) + self.EPS)
return avg_loss
loss = loss.reshape((-1, ))
top_k_pixels = int(self.top_k_percent_pixels * loss.numel())
loss, indices = paddle.topk(loss, top_k_pixels)
coef = coef.reshape((-1, ))
coef = paddle.gather(coef, indices)
coef.stop_gradient = True
return loss.mean() / (paddle.mean(coef) + self.EPS)
def point_sample(input, points, align_corners=False, **kwargs):
"""A wrapper around :func:`grid_sample` to support 3D point_coords tensors
Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to
lie inside ``[0, 1] x [0, 1]`` square.
Args:
input (Tensor): Feature map, shape (N, C, H, W).
points (Tensor): Image based absolute point coordinates (normalized),
range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2).
align_corners (bool): Whether align_corners. Default: False
Returns:
Tensor: Features of `point` on `input`, shape (N, C, P) or
(N, C, Hgrid, Wgrid).
"""
def denormalize(grid):
"""Denormalize input grid from range [0, 1] to [-1, 1]
Args:
grid (Tensor): The grid to be denormalize, range [0, 1].
Returns:
Tensor: Denormalized grid, range [-1, 1].
"""
return grid * 2.0 - 1.0
add_dim = False
if points.dim() == 3:
add_dim = True
points = paddle.unsqueeze(points, axis=2) # [2, 2048, 1, 2]
output = F.grid_sample(
input, denormalize(points), align_corners=align_corners, **kwargs)
if add_dim:
output = paddle.squeeze(output, axis=3)
return output
|