Spaces:
Configuration error
Configuration error
File size: 7,540 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import cv2
import numpy as np
import paddle
from paddle import nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
@manager.LOSSES.add_component
class SemanticConnectivityLoss(nn.Layer):
'''
SCL (Semantic Connectivity-aware Learning) framework, which introduces a SC Loss (Semantic Connectivity-aware Loss)
to improve the quality of segmentation results from the perspective of connectivity. Support multi-class segmentation.
The original article refers to
Lutao Chu, Yi Liu, Zewu Wu, Shiyu Tang, Guowei Chen, Yuying Hao, Juncai Peng, Zhiliang Yu, Zeyu Chen, Baohua Lai, Haoyi Xiong.
"PP-HumanSeg: Connectivity-Aware Portrait Segmentation with a Large-Scale Teleconferencing Video Dataset"
In WACV 2022 workshop
https://arxiv.org/abs/2112.07146
Running process:
Step 1. Connected Components Calculation
Step 2. Connected Components Matching and SC Loss Calculation
'''
def __init__(self, ignore_index=255, max_pred_num_conn=10, use_argmax=True):
'''
Args:
ignore_index (int): Specify a pixel value to be ignored in the annotated image and does not contribute to
the input gradient.When there are pixels that cannot be marked (or difficult to be marked) in the marked
image, they can be marked as a specific gray value. When calculating the loss value, the pixel corresponding
to the original image will not be used as the independent variable of the loss function. *Default:``255``*
max_pred_num_conn (int): Maximum number of predicted connected components. At the beginning of training,
there will be a large number of connected components, and the calculation is very time-consuming.
Therefore, it is necessary to limit the maximum number of predicted connected components,
and the rest will not participate in the calculation.
use_argmax (bool): Whether to use argmax for logits.
'''
super().__init__()
self.ignore_index = ignore_index
self.max_pred_num_conn = max_pred_num_conn
self.use_argmax = use_argmax
def forward(self, logits, labels):
'''
Args:
logits (Tensor): [N, C, H, W]
lables (Tensor): [N, H, W]
'''
preds = paddle.argmax(logits, axis=1) if self.use_argmax else logits
preds_np = preds.astype('uint8').numpy()
labels_np = labels.astype('uint8').numpy()
preds = paddle.to_tensor(preds, 'float32', stop_gradient=False)
multi_class_sc_loss = paddle.zeros([preds.shape[0]])
zero = paddle.to_tensor([0.]) # for accelerating
# Traverse each image
for i in range(preds.shape[0]):
sc_loss = 0
class_num = 0
pred_i = preds[i]
preds_np_i = preds_np[i]
labels_np_i = labels_np[i]
# Traverse each class
for class_ in np.unique(labels_np_i):
if class_ == self.ignore_index:
continue
class_num += 1
# Connected Components Calculation
preds_np_class = preds_np_i == class_
labels_np_class = labels_np_i == class_
pred_num_conn, pred_conn = cv2.connectedComponents(
preds_np_class.astype(np.uint8)) # pred_conn.shape = [H,W]
label_num_conn, label_conn = cv2.connectedComponents(
labels_np_class.astype(np.uint8))
origin_pred_num_conn = pred_num_conn
if pred_num_conn > 2 * label_num_conn:
pred_num_conn = min(pred_num_conn, self.max_pred_num_conn)
real_pred_num = pred_num_conn - 1
real_label_num = label_num_conn - 1
# Connected Components Matching and SC Loss Calculation
if real_label_num > 0 and real_pred_num > 0:
img_connectivity = compute_class_connectiveity(
pred_conn, label_conn, pred_num_conn,
origin_pred_num_conn, label_num_conn, pred_i,
real_label_num, real_pred_num, zero)
sc_loss += 1 - img_connectivity
elif real_label_num == 0 and real_pred_num == 0:
# if no connected component, SC Loss = 0, so pass
pass
else:
preds_class = pred_i == int(class_)
not_preds_class = paddle.bitwise_not(preds_class)
labels_class = paddle.to_tensor(labels_np_class)
missed_detect = labels_class * not_preds_class
missed_detect_area = paddle.sum(missed_detect).astype(
'float32')
sc_loss += missed_detect_area / missed_detect.numel() + 1
multi_class_sc_loss[
i] = sc_loss / class_num if class_num != 0 else 0
multi_class_sc_loss = paddle.mean(multi_class_sc_loss)
return multi_class_sc_loss
def compute_class_connectiveity(pred_conn, label_conn, pred_num_conn,
origin_pred_num_conn, label_num_conn, pred,
real_label_num, real_pred_num, zero):
pred_conn = paddle.to_tensor(pred_conn)
label_conn = paddle.to_tensor(label_conn)
pred_conn = F.one_hot(pred_conn, origin_pred_num_conn)
label_conn = F.one_hot(label_conn, label_num_conn)
ious = paddle.zeros((real_label_num, real_pred_num))
pair_conn_sum = paddle.to_tensor([0.], stop_gradient=False)
for i in range(1, label_num_conn):
label_i = label_conn[:, :, i]
pair_conn = paddle.to_tensor([0.], stop_gradient=False)
pair_conn_num = 0
for j in range(1, pred_num_conn):
pred_j_mask = pred_conn[:, :, j]
pred_j = pred_j_mask * pred
iou = compute_iou(pred_j, label_i, zero)
ious[i - 1, j - 1] = iou
if iou != 0:
pair_conn += iou
pair_conn_num += 1
if pair_conn_num != 0:
pair_conn_sum += pair_conn / pair_conn_num
lone_pred_num = 0
pred_sum = paddle.sum(ious, axis=0)
for m in range(0, real_pred_num):
if pred_sum[m] == 0:
lone_pred_num += 1
img_connectivity = pair_conn_sum / (real_label_num + lone_pred_num)
return img_connectivity
def compute_iou(pred_i, label_i, zero):
intersect_area_i = paddle.sum(pred_i * label_i)
if paddle.equal(intersect_area_i, zero):
return 0
pred_area_i = paddle.sum(pred_i)
label_area_i = paddle.sum(label_i)
union_area_i = pred_area_i + label_area_i - intersect_area_i
if paddle.equal(union_area_i, zero):
return 1
else:
return intersect_area_i / union_area_i
|