File size: 6,385 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# copyright (c) 2022 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

from paddleseg import utils
from paddleseg.models import layers
from paddleseg.cvlibs import manager


@manager.MODELS.add_component
class LRASPP(nn.Layer):
    """
    Semantic segmentation model with a light R-ASPP head.
    
    The original article refers to
        Howard, Andrew, et al. "Searching for mobilenetv3."
        (https://arxiv.org/pdf/1909.11065.pdf)

    Args:
        num_classes (int): The number of target classes.
        backbone(nn.Layer): Backbone network, such as stdc1net and resnet18. The backbone must
            has feat_channels, of which the length is 5.
        backbone_indices (List(int), optional): The values indicate the indices of backbone output 
            used as the input of the LR-ASPP head.
            Default: [0, 1, 3].
        lraspp_head_inter_chs (List(int), optional): The intermediate channels of LR-ASPP head.
            Default: [32, 64].
        lraspp_head_out_ch (int, optional): The output channels of each ASPP branch in the LR-ASPP head.
            Default: 128
        resize_mode (str, optional): The resize mode for the upsampling operation in the LR-ASPP head.
            Default: bilinear.
        use_gap (bool, optional): If true, use global average pooling in the LR-ASPP head; otherwise, use
            a 49x49 kernel for average pooling.
            Default: True.
        pretrained (str, optional): The path or url of pretrained model. Default: None.
    """

    def __init__(self,
                 num_classes,
                 backbone,
                 backbone_indices=[0, 1, 3],
                 lraspp_head_inter_chs=[32, 64],
                 lraspp_head_out_ch=128,
                 resize_mode='bilinear',
                 use_gap=True,
                 pretrained=None):
        super().__init__()

        # backbone
        assert hasattr(backbone, 'feat_channels'), \
            "The backbone should has feat_channels."
        assert len(backbone.feat_channels) >= len(backbone_indices), \
            f"The length of input backbone_indices ({len(backbone_indices)}) should not be" \
            f"greater than the length of feat_channels ({len(backbone.feat_channels)})."
        assert len(backbone.feat_channels) > max(backbone_indices), \
            f"The max value ({max(backbone_indices)}) of backbone_indices should be " \
            f"less than the length of feat_channels ({len(backbone.feat_channels)})."
        self.backbone = backbone

        assert len(backbone_indices) >= 1, "The lenght of backbone_indices " \
            "should not be lesser than 1"

        # head
        assert len(backbone_indices) == len(
            lraspp_head_inter_chs
        ) + 1, "The length of backbone_indices should be 1 greater than lraspp_head_inter_chs."
        self.backbone_indices = backbone_indices

        self.lraspp_head = LRASPPHead(backbone_indices, backbone.feat_channels,
                                      lraspp_head_inter_chs, lraspp_head_out_ch,
                                      num_classes, resize_mode, use_gap)

        # pretrained
        self.pretrained = pretrained
        self.init_weight()

    def forward(self, x):
        x_hw = paddle.shape(x)[2:]

        feats_backbone = self.backbone(x)
        assert len(feats_backbone) >= len(self.backbone_indices), \
            f"The nums of backbone feats ({len(feats_backbone)}) should be greater or " \
            f"equal than the nums of backbone_indices ({len(self.backbone_indices)})"

        y = self.lraspp_head(feats_backbone)
        y = F.interpolate(y, x_hw, mode='bilinear', align_corners=False)
        logit_list = [y]

        return logit_list

    def init_weight(self):
        if self.pretrained is not None:
            utils.load_entire_model(self, self.pretrained)


class LRASPPHead(nn.Layer):
    def __init__(self,
                 indices,
                 in_chs,
                 mid_chs,
                 out_ch,
                 n_classes,
                 resize_mode,
                 use_gap,
                 align_corners=False):
        super().__init__()

        self.indices = indices[-2::-1]
        self.in_chs = [in_chs[i] for i in indices[::-1]]
        self.mid_chs = mid_chs[::-1]
        self.convs = nn.LayerList()
        self.conv_ups = nn.LayerList()
        for in_ch, mid_ch in zip(self.in_chs[1:], self.mid_chs):
            self.convs.append(
                nn.Conv2D(
                    in_ch, mid_ch, kernel_size=1, bias_attr=False))
            self.conv_ups.append(layers.ConvBNReLU(out_ch + mid_ch, out_ch, 1))
        self.conv_w = nn.Sequential(
            nn.AvgPool2D(
                kernel_size=(49, 49), stride=(16, 20))
            if not use_gap else nn.AdaptiveAvgPool2D(1),
            nn.Conv2D(
                self.in_chs[0], out_ch, 1, bias_attr=False),
            nn.Sigmoid())
        self.conv_v = layers.ConvBNReLU(self.in_chs[0], out_ch, 1)
        self.conv_t = nn.Conv2D(out_ch, out_ch, kernel_size=1, bias_attr=False)
        self.conv_out = nn.Conv2D(
            out_ch, n_classes, kernel_size=1, bias_attr=False)

        self.interp = partial(
            F.interpolate, mode=resize_mode, align_corners=align_corners)

    def forward(self, in_feat_list):
        x = in_feat_list[-1]

        x = self.conv_v(x) * self.interp(self.conv_w(x), paddle.shape(x)[2:])
        y = self.conv_t(x)

        for idx, conv, conv_up in zip(self.indices, self.convs, self.conv_ups):
            feat = in_feat_list[idx]
            y = self.interp(y, paddle.shape(feat)[2:])
            y = paddle.concat([y, conv(feat)], axis=1)
            y = conv_up(y)

        y = self.conv_out(y)
        return y