Spaces:
Configuration error
Configuration error
File size: 35,884 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 |
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class PointRend(nn.Layer):
"""
The SemanticFPN-PointRend implementation based on PaddlePaddle.
The original article refers to
Kirillov A, Wu Y, He K, et al. "PointRend: Image Segmentation As Rendering."
(https://arxiv.org/abs/1912.08193).
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101.
backbone_indices (tuple, optional): Four values in the tuple indicate the indices of output of backbone.
fpn_inplanes (list, optional): Input channels list(the feature channels from backbone) for lateral_conv constraction in FPN. Default: [256, 512, 1024, 2048].
fpn_outplanes (int, optional): The output channels in FPN. Default: 256.
point_num_fcs (int, optional): Number of fc layers in the head in PointHead. Default: 3.
point_in_channels (list, optional): input channels of fc block in PointHead. Default: [256].
point_out_channels (int, optional): Fc block's output channels in PointHead. Default: 256.
point_in_index (list, optional): The indexs of input features to use in PointHead. Default: [0].
point_num_points (int, optional): The number of point in training mode in PointHead. Default: 2048.
point_oversample_ratio (int, optional): The sample ratio of points when in training mode in PointHead.
sampled_point = num_points * oversample_ratio. Default: 3.
point_importance_sample_ratio (float, optional): The importance sample ratio for compute num_uncertain_points in PointHead. Default: 0.75.
point_scale_factor(int, optinal): The scale factor of F.interpolate in refine seg logits stage when in inference in PointHead. Default: 2.
point_subdivision_steps(int, optional): Then refine steps in refine seg logits stage when in inference in PointHead. Default: 2.
point_subdivision_num_points(int, optional): The points number for refine seg logits when in inference in PointHead. Default: 8196.
point_dropout_ratio(float, optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio in PointHead. Default: 0.1.
point_coarse_pred_each_layer(bool, optional): Whether concatenate coarse feature with
the output of each fc layer in PointHead. Default: True.
point_conv_cfg(str): The config of Conv in PointHead. Default: 'Conv1D'.
point_input_transform(str): The features transform method of inputs in PointHead.
it can be found in function '_transform_inputs'. Defalut: 'multiple_select'.
PFN_feature_strides(list): The strides for input feature maps and all strides suppose to be power of 2 in FPNHead. The first
one is of largest resolution. Default: [4, 8, 16, 32].
PFN_in_channels(list): The input feature's channels list in FPNHead. Default: [256, 256, 256, 256].
PFN_channels(int,optional): The output channels of scale_head's Conv before Upsample block in FPNHead. Default: 128.
PFN_in_index(list): The indexs of input features to use. it's shape should keep with in_channels in FPNHead. Default: [0, 1, 2, 3].
PFN_dropout_ratio(float,optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio in FPNHead. Default: 0.1.
PFN_conv_cfg(str): The config of Conv. Default: 'Conv2D'.
PFN_input_transform(str): The features transform method of inputs. it can be found in function '_transform_inputs' in FPNHead. Defalut: 'multiple_select'.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(
self,
num_classes,
backbone,
backbone_indices,
fpn_inplanes=[256, 512, 1024, 2048],
fpn_outplanes=256,
point_in_channels=[256],
point_out_channels=256,
point_in_index=[0],
point_num_fcs=3,
point_num_points=2048,
point_oversample_ratio=3,
point_importance_sample_ratio=0.75,
point_scale_factor=2,
point_subdivision_steps=2,
point_subdivision_num_points=8196,
point_dropout_ratio=0,
point_coarse_pred_each_layer=True,
point_input_transform='multiple_select', # resize_concat
point_conv_cfg='Conv1D',
PFN_feature_strides=[4, 8, 16, 32],
PFN_in_channels=[256, 256, 256, 256],
PFN_channels=128,
PFN_in_index=[0, 1, 2, 3],
PFN_dropout_ratio=0,
PFN_conv_cfg='Conv2D',
PFN_input_transform='multiple_select',
align_corners=False,
pretrained=None):
super(PointRend, self).__init__()
self.backbone = backbone
self.backbone_indices = backbone_indices
self.in_channels = [
self.backbone.feat_channels[i] for i in backbone_indices
]
self.neck = FPNNeck(
fpn_inplanes=fpn_inplanes, fpn_outplanes=fpn_outplanes)
self.pointhead = PointHead(
in_channels=point_in_channels,
out_channels=point_out_channels,
num_classes=num_classes,
in_index=point_in_index,
num_fcs=point_num_fcs,
num_points=point_num_points,
oversample_ratio=point_oversample_ratio,
importance_sample_ratio=point_importance_sample_ratio,
scale_factor=point_scale_factor,
subdivision_steps=point_subdivision_steps,
subdivision_num_points=point_subdivision_num_points,
dropout_ratio=point_dropout_ratio,
align_corners=align_corners,
coarse_pred_each_layer=point_coarse_pred_each_layer,
input_transform=point_input_transform, # resize_concat
conv_cfg=point_conv_cfg)
self.fpnhead = FPNHead(
feature_strides=PFN_feature_strides,
in_channels=PFN_in_channels,
channels=PFN_channels,
num_class=num_classes,
in_index=PFN_in_index,
dropout_ratio=PFN_dropout_ratio,
conv_cfg=PFN_conv_cfg,
input_transform=PFN_input_transform,
align_corners=align_corners)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feats = self.backbone(x)
feats = [feats[i] for i in self.backbone_indices]
fpn_feats = self.neck(feats) # [n,256,64,128]*3 & [n,256,128,256]
pfn_logits = self.fpnhead(
fpn_feats) # segmainoutput decode_head[0] 512*1024->[n, 19, 64, 128]
point_logits = self.pointhead(
fpn_feats, pfn_logits) # segpointoutput decode_head[1]
if self.training:
logit_list = [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in pfn_logits
]
logit_list.append(point_logits)
else:
logit_list = [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in point_logits
]
return logit_list
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class PointHead(nn.Layer):
"""
The PointHead implementation based on PaddlePaddle.
PointHead use shared multi-layer perceptron (equivalent to
nn.Conv1D) to predict the logit of input points. The fine-grained feature
and coarse feature will be concatenate together for predication.
The original article refers to:
Kirillov A , Wu Y , He K , et al "PointRend: Image Segmentation As Rendering."
(https://arxiv.org/abs/1912.08193)
Args:
num_classes (int): Number of classes for logits. Default: 19.
num_fcs (int, optional): Number of fc layers in the head. Default: 3.
in_channels (list): input channels of fc block. Default: [256].
out_channels (int, optional): Fc block's output channels. Default: 256.
in_index (list): The indexs of input features to use. Default: [0].
num_points (int, optional): The number of point in training mode. Default: 2048.
oversample_ratio (int, optional): The sample ratio of points when in training mode.
sampled_point = num_points * oversample_ratio. Default: 3.
importance_sample_ratio(float, optional): The importance sample ratio for compute num_uncertain_points. Default: 0.75.
scale_factor(int, optional): The scale factor of F.interpolate in refine seg logits stage when in inference. Default: 2.
subdivision_steps(int, optional): Then refine steps in refine seg logits stage when in inference. Default: 2.
subdivision_num_points(int, optional): The points number for refine seg logits when in inference. Default: 8196.
dropout_ratio(float, optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio. Default: 0.1.
coarse_pred_each_layer(bool, optional): Whether concatenate coarse feature with
the output of each fc layer. Default: True.
conv_cfg(str): The config of Conv. Default: 'Conv1D'.
input_transform(str): The features transform method of inputs.
it can be found in function '_transform_inputs'. Defalut: 'multiple_select'.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
"""
def __init__(
self,
num_classes=19,
num_fcs=3,
in_channels=[256],
out_channels=256,
in_index=[0],
num_points=2048,
oversample_ratio=3,
importance_sample_ratio=0.75,
scale_factor=2,
subdivision_steps=2,
subdivision_num_points=8196,
dropout_ratio=0.1,
coarse_pred_each_layer=True,
conv_cfg='Conv1D',
input_transform='multiple_select', # resize_concat
align_corners=False):
super(PointHead, self).__init__()
self.in_channels = in_channels
self.channels = out_channels
self.in_index = in_index
self.num_classes = num_classes
self.num_fcs = num_fcs
self.num_points = num_points
self.oversample_ratio = oversample_ratio
self.importance_sample_ratio = importance_sample_ratio
self.scale_factor = scale_factor
self.subdivision_steps = subdivision_steps
self.subdivision_num_points = paddle.to_tensor(
subdivision_num_points, dtype="int32")
self.dropout_ratio = dropout_ratio
self.coarse_pred_each_layer = coarse_pred_each_layer
self.align_corners = align_corners
self.input_transform = input_transform
fc_in_channels = sum(self.in_channels) + self.num_classes
fc_channels = self.channels
self.fcs = nn.LayerList()
for k in range(num_fcs):
fc = ConvModule(
fc_in_channels,
fc_channels,
kernel_size=1,
stride=1,
padding=0,
conv_cfg=conv_cfg, )
self.fcs.append(fc)
fc_in_channels = fc_channels
fc_in_channels += self.num_classes if self.coarse_pred_each_layer else 0
self.fc_seg = nn.Conv1D(
fc_in_channels,
self.num_classes,
kernel_size=1,
stride=1,
padding=0)
if self.dropout_ratio > 0:
self.dropout = nn.Dropout(self.dropout_ratio)
else:
self.dropout = None
def cls_seg(self, feat):
"""Classify each pixel with fc."""
if self.dropout is not None:
feat = self.dropout(feat)
output = self.fc_seg(feat)
return output
def _get_fine_grained_point_feats(self, x, points):
"""
Sample from fine grained features.
Args:
x (list[Tensor]): Feature pyramid from by neck or backbone.
points (Tensor): Point coordinates, shape (batch_size,
num_points, 2).
Returns:
fine_grained_feats (Tensor): Sampled fine grained feature,
shape (batch_size, sum(channels of x), num_points).
"""
fine_grained_feats_list = [
point_sample(
_, points, align_corners=self.align_corners) for _ in x
]
if len(fine_grained_feats_list) > 1:
fine_grained_feats = paddle.concat(fine_grained_feats_list, axis=1)
else:
fine_grained_feats = fine_grained_feats_list[0]
return fine_grained_feats
def _get_coarse_point_feats(self, prev_output, points):
"""
Sample from fine grained features.
Args:
prev_output (list[Tensor]): Prediction of previous decode head.
points (Tensor): Point coordinates, shape (batch_size,
num_points, 2).
Returns:
coarse_feats (Tensor): Sampled coarse feature, shape (batch_size,
num_classes, num_points).
"""
coarse_feats = point_sample(
prev_output, points, align_corners=self.align_corners)
return coarse_feats
def _transform_inputs(self, inputs):
"""
Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
F.interpolate(
x,
size=paddle.shape(inputs[0])[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = paddle.concat(upsampled_inputs, axis=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index[0]]
return inputs
def get_points_train(self, seg_logits, uncertainty_func): # finish
"""
Sample points for training.
Sample points in [0, 1] x [0, 1] coordinate space based on their
uncertainty. The uncertainties are calculated for each point using
'uncertainty_func' function that takes point's logit prediction as
input.
Args:
seg_logits (Tensor): Semantic segmentation logits, shape (
batch_size, num_classes, height, width).
uncertainty_func (func): uncertainty calculation function.
cfg (dict): Training config of point head.
Returns:
point_coords (Tensor): A tensor of shape (batch_size, num_points,
2) that contains the coordinates of ``num_points`` sampled
points.
"""
num_points = self.num_points
oversample_ratio = self.oversample_ratio
importance_sample_ratio = self.importance_sample_ratio
assert oversample_ratio >= 1
assert 0 <= importance_sample_ratio <= 1
batch_size = paddle.shape(seg_logits)[0]
num_sampled = int(num_points * oversample_ratio)
point_coords = paddle.rand([batch_size, num_sampled, 2])
point_logits = point_sample(seg_logits, point_coords)
# It is crucial to calculate uncertainty based on the sampled
# prediction value for the points. Calculating uncertainties of the
# coarse predictions first and sampling them for points leads to
# incorrect results. To illustrate this: assume uncertainty func(
# logits)=-abs(logits), a sampled point between two coarse
# predictions with -1 and 1 logits has 0 logits, and therefore 0
# uncertainty value. However, if we calculate uncertainties for the
# coarse predictions first, both will have -1 uncertainty,
# and sampled point will get -1 uncertainty.
point_uncertainties = uncertainty_func(point_logits)
num_uncertain_points = int(importance_sample_ratio * num_points)
num_random_points = num_points - num_uncertain_points
idx = paddle.topk(
point_uncertainties[:, 0, :], k=num_uncertain_points, axis=1)[1]
shift = num_sampled * paddle.arange(batch_size, dtype='int64')
idx += shift.unsqueeze([-1])
idx = idx.reshape([-1])
point_coords = paddle.index_select(
point_coords.reshape([-1, 2]), idx, axis=0)
point_coords = point_coords.reshape(
[batch_size, num_uncertain_points, 2])
if num_random_points > 0:
rand_point_coords = paddle.rand([batch_size, num_random_points, 2])
point_coords = paddle.concat(
(point_coords, rand_point_coords), axis=1)
return point_coords
def get_points_test(self, seg_logits, uncertainty_func): # finish
"""
Sample points for testing.
Find ``num_points`` most uncertain points from ``uncertainty_map``.
Args:
seg_logits (Tensor): A tensor of shape (batch_size, num_classes,
height, width) for class-specific or class-agnostic prediction.
uncertainty_func (func): uncertainty calculation function.
cfg (dict): Testing config of point head.
Returns:
point_indices (Tensor): A tensor of shape (batch_size, num_points)
that contains indices from [0, height x width) of the most
uncertain points.
point_coords (Tensor): A tensor of shape (batch_size, num_points,
2) that contains [0, 1] x [0, 1] normalized coordinates of the
most uncertain points from the ``height x width`` grid .
"""
num_points = self.subdivision_num_points
uncertainty_map = uncertainty_func(seg_logits)
batch_size = paddle.shape(uncertainty_map)[0]
height = paddle.shape(uncertainty_map)[2]
width = paddle.shape(uncertainty_map)[3]
h_step = 1.0 / height
w_step = 1.0 / width
uncertainty_map = uncertainty_map.reshape([batch_size, height * width])
num_points = paddle.min(paddle.concat([height * width, num_points]))
point_indices = paddle.topk(uncertainty_map, num_points, axis=1)[1]
point_coords = paddle.zeros(
[batch_size, num_points, 2], dtype='float32')
point_coords[:, :, 0] = w_step / 2.0 + (point_indices % width
).astype('float32') * w_step
point_coords[:, :, 1] = h_step / 2.0 + (point_indices // width
).astype('float32') * h_step
return point_indices, point_coords
def scatter_paddle(self, refined_seg_logits, point_indices, point_logits):
"""
paddle version scatter : equal to pytorch version scatter(-1,point_indices,point_logits).
Args:
refined_seg_logits(Tensor): shape=[batch_size, channels, height * width]
point_indices(Tensor): shape=[batch_size, channels, height * width]
point_logits(Tensor): shape[batch_size, channels, height * width]
Returns:
scattered refined_seg_logits(Tensor).
"""
original_shape = paddle.shape(
refined_seg_logits) # [batch_size, channels, height * width]
new_refined_seg_logits = refined_seg_logits.flatten(0, 1) # [N*C,H*W]
offsets = (
paddle.arange(paddle.shape(new_refined_seg_logits)[0]) *
paddle.shape(new_refined_seg_logits)[1]).unsqueeze(-1) # [N*C,1]
point_indices = point_indices.flatten(0, 1) # [N*C,H*W]
new_point_indices = (point_indices + offsets).flatten()
point_logits = point_logits.flatten() # [N*C*H*W]
refined_seg_logits = paddle.scatter(
refined_seg_logits.flatten(),
new_point_indices,
point_logits,
overwrite=True)
return refined_seg_logits.reshape(shape=original_shape)
def forward_train(self, x, prev_output):
with paddle.no_grad():
points = self.get_points_train(prev_output, calculate_uncertainty)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, points) # [2, 256, 2048]
coarse_point_feats = self._get_coarse_point_feats(
prev_output, points) # [2, 19, 2048]
# forward for train
fusion_point_feats = paddle.concat(
[fine_grained_point_feats, coarse_point_feats], axis=1)
for fc in self.fcs:
fusion_point_feats = fc(fusion_point_feats)
if self.coarse_pred_each_layer:
fusion_point_feats = paddle.concat(
(fusion_point_feats, coarse_point_feats), axis=1)
point_logits = self.cls_seg(fusion_point_feats)
return [point_logits, points] # for points loss
def forward(self, inputs, prev_output):
"""
Forward function.
Args:
inputs (list[Tensor]): List of multi-level img features.
prev_output (Tensor): The output of previous decode head.
Returns:
[point_logits,points]: For points loss when in training.
[refined_seg_logits]: Output refined seg logits when in inference.
"""
prev_output = prev_output[0]
x = self._transform_inputs(inputs)
if self.training:
return self.forward_train(x, prev_output)
else:
refined_seg_logits = prev_output.clone()
for _ in range(self.subdivision_steps):
refined_seg_logits = F.interpolate(
refined_seg_logits,
scale_factor=self.scale_factor,
mode='bilinear',
align_corners=self.align_corners)
save_shape = paddle.shape(refined_seg_logits)
point_indices, points = self.get_points_test(
refined_seg_logits, calculate_uncertainty)
fine_grained_point_feats = self._get_fine_grained_point_feats(
x, points)
coarse_point_feats = self._get_coarse_point_feats(prev_output,
points)
# forward for inference
fusion_point_feats = paddle.concat(
[fine_grained_point_feats, coarse_point_feats], axis=1)
for fc in self.fcs:
fusion_point_feats = fc(fusion_point_feats)
if self.coarse_pred_each_layer:
fusion_point_feats = paddle.concat(
(fusion_point_feats, coarse_point_feats), axis=1)
point_logits = self.cls_seg(fusion_point_feats)
point_indices = paddle.unsqueeze(point_indices, axis=1)
point_indices = paddle.expand(point_indices,
[-1, save_shape[1], -1])
refined_seg_logits = paddle.flatten(refined_seg_logits, 2)
refined_seg_logits = self.scatter_paddle(
refined_seg_logits, point_indices,
point_logits) # 2->height * width dim
refined_seg_logits = refined_seg_logits.reshape(save_shape)
return [refined_seg_logits]
class FPNHead(nn.Layer):
"""
This head is the implementation of Semantic FPN in paddle.
The original article refers to:
Kirillov, A. , et al. "Panoptic Feature Pyramid Networks."
(https://arxiv.org/abs/1901.02446)
Args:
num_classes(int): The unique number of target classes. Default: 19.
feature_strides(list): The strides for input feature maps and all strides suppose to be power of 2. The first
one is of largest resolution. Default: [4, 8, 16, 32].
in_channels(list): The input feature's channels list. Default: [256, 256, 256, 256].
channels(int, optional): The output channels of scale_head's Conv before Upsample block. Default: 128.
in_index(list): The indexs of input features to use. it's shape should keep with in_channels. Default: [0, 1, 2, 3].
dropout_ratio(float, optional): If the dropout_ratio >0, to use Dropout before output and the p of dropout is dropout_ratio. Default: 0.1.
conv_cfg(str): The config of Conv. Default: 'Conv2D'.
input_transform(str): The features transform method of inputs. it can be found in function '_transform_inputs'. Defalut: 'multiple_select'.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
"""
def __init__(
self,
num_class=19,
feature_strides=[4, 8, 16, 32],
in_channels=[256, 256, 256, 256],
channels=128,
in_index=[0, 1, 2, 3],
dropout_ratio=0.1,
conv_cfg='Conv2D',
input_transform='multiple_select',
align_corners=False, ):
super(FPNHead, self).__init__()
assert len(feature_strides) == len(in_channels)
assert min(feature_strides) == feature_strides[0]
self.feature_strides = feature_strides
self.in_channels = in_channels
self.channels = channels
self.in_index = in_index
self.num_class = num_class
self.conv_cfg = conv_cfg
self.dropout_ratio = dropout_ratio
self.input_transform = input_transform
self.align_corners = align_corners
self.scale_heads = nn.LayerList()
for i in range(len(feature_strides)):
head_length = max(
1,
int(np.log2(feature_strides[i]) - np.log2(feature_strides[0])))
scale_head = []
for k in range(head_length):
scale_head.append(
ConvModule(
self.in_channels[i] if k == 0 else self.channels,
self.channels,
3,
padding=1,
conv_cfg=self.conv_cfg))
if feature_strides[i] != feature_strides[0]:
scale_head.append(
Upsample(
scale_factor=2,
mode='bilinear',
align_corners=self.align_corners))
self.scale_heads.append(nn.Sequential(*scale_head))
self.conv_seg = nn.Conv2D(self.channels, self.num_class, kernel_size=1)
if self.dropout_ratio is not None:
self.dropout = nn.Dropout2D(self.dropout_ratio)
else:
self.dropout = None
def cls_seg(self, feat):
if self.dropout is not None:
feat = self.dropout(feat)
output = self.conv_seg(feat)
return output
def _transform_inputs(self, inputs):
"""
Transform inputs for decoder.
Args:
inputs (list[Tensor]): List of multi-level img features.
Returns:
Tensor: The transformed inputs
"""
if self.input_transform == 'resize_concat':
inputs = [inputs[i] for i in self.in_index]
upsampled_inputs = [
F.interpolate(
x,
size=paddle.shape(inputs[0])[2:],
mode='bilinear',
align_corners=self.align_corners) for x in inputs
]
inputs = paddle.concat(upsampled_inputs, axis=1)
elif self.input_transform == 'multiple_select':
inputs = [inputs[i] for i in self.in_index]
else:
inputs = inputs[self.in_index[0]]
return inputs
def forward(self, inputs):
x = self._transform_inputs(inputs)
output = self.scale_heads[0](x[0])
for i in range(1, len(self.feature_strides)):
output = output + F.interpolate(
self.scale_heads[i](x[i]),
size=paddle.shape(output)[2:],
mode='bilinear',
align_corners=self.align_corners)
output = self.cls_seg(output)
return [output]
class FPNNeck(nn.Layer):
"""
The FPN Neck implementation in paddle.
Args:
fpn_inplanes (list, optional): Input channels list(the feature channels from backbone) for lateral_conv constraction. Default: [256, 512, 1024, 2048].
fpn_outplanes (int, optional): The output channels. Default: 256.
"""
def __init__(
self,
fpn_inplanes=[256, 512, 1024, 2048],
fpn_outplanes=256, ):
super(FPNNeck, self).__init__()
self.lateral_convs = []
self.fpn_out = []
# FPN head
for fpn_inplane in fpn_inplanes:
self.lateral_convs.append(
nn.Sequential(
nn.Conv2D(fpn_inplane, fpn_outplanes, 1),
layers.SyncBatchNorm(fpn_outplanes), nn.ReLU()))
self.fpn_out.append(
nn.Sequential(
layers.ConvBNReLU(
fpn_outplanes, fpn_outplanes, 3, bias_attr=False)))
self.lateral_convs = nn.LayerList(self.lateral_convs)
self.fpn_out = nn.LayerList(self.fpn_out)
def forward(self, conv_out):
last_out = self.lateral_convs[-1](conv_out[-1])
f = last_out
fpn_feature_list = [last_out]
for i in reversed(range(len(conv_out) - 1)):
conv_x = conv_out[i]
conv_x = self.lateral_convs[i](conv_x)
prev_shape = paddle.shape(conv_x)[2:]
f = conv_x + F.interpolate(
f, prev_shape, mode='bilinear', align_corners=True)
fpn_feature_list.append(self.fpn_out[i](f))
return fpn_feature_list
class ConvModule(nn.Layer):
"""
ConvModule includes Conv1/Conv2D.
"""
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding=0,
stride=1,
conv_cfg='Conv1D',
norm_cfg='None',
**kwargs):
super().__init__()
if (conv_cfg == 'Conv1D'):
self._conv = nn.Conv1D(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
**kwargs)
if (conv_cfg == 'Conv2D'):
self._conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=padding,
**kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
if (norm_cfg != 'None'):
self._batch_norm = layers.SyncBatchNorm(
out_channels, data_format=data_format)
else:
self._batch_norm = None
def forward(self, x):
x = self._conv(x)
if (self._batch_norm != None):
x = self._batch_norm(x)
x = F.relu(x)
return x
class Upsample(nn.Layer):
"""
Upsample Module.
"""
def __init__(self,
size=None,
scale_factor=None,
mode='nearest',
align_corners=None):
super(Upsample, self).__init__()
self.size = size
if isinstance(scale_factor, tuple):
self.scale_factor = tuple(float(factor) for factor in scale_factor)
else:
self.scale_factor = float(scale_factor) if scale_factor else None
self.mode = mode
self.align_corners = align_corners
def forward(self, x):
if not self.size:
return F.interpolate(x, None, self.scale_factor, self.mode,
self.align_corners)
else:
return F.interpolate(x, self.size, None, self.mode,
self.align_corners)
def point_sample(input, points, align_corners=False, **kwargs):
"""
A wrapper around :func:`grid_sample` to support 3D point_coords tensors
Unlike :func:`torch.nn.functional.grid_sample` it assumes point_coords to
lie inside ``[0, 1] x [0, 1]`` square.
Args:
input (Tensor): Feature map, shape (N, C, H, W).
points (Tensor): Image based absolute point coordinates (normalized),
range [0, 1] x [0, 1], shape (N, P, 2) or (N, Hgrid, Wgrid, 2).
align_corners (bool): Whether align_corners. Default: False
Returns:
Tensor: Features of `point` on `input`, shape (N, C, P) or
(N, C, Hgrid, Wgrid).
"""
def denormalize(grid):
"""Denormalize input grid from range [0, 1] to [-1, 1]
Args:
grid (Tensor): The grid to be denormalize, range [0, 1].
Returns:
Tensor: Denormalized grid, range [-1, 1].
"""
return grid * 2.0 - 1.0
add_dim = False
if points.dim() == 3:
add_dim = True
points = paddle.unsqueeze(points, axis=2)
output = F.grid_sample(
input, denormalize(points), align_corners=align_corners, **kwargs)
if add_dim:
output = paddle.squeeze(output, axis=3)
return output
def calculate_uncertainty(seg_logits):
"""
Estimate uncertainty based on seg logits.
For each location of the prediction ``seg_logits`` we estimate
uncertainty as the difference between top first and top second
predicted logits.
Args:
seg_logits (Tensor): Semantic segmentation logits,
shape (batch_size, num_classes, height, width).
Returns:
scores (Tensor): T uncertainty scores with the most uncertain
locations having the highest uncertainty score, shape (
batch_size, 1, height, width)
"""
top2_scores = paddle.topk(seg_logits, k=2, axis=1)[0]
return paddle.unsqueeze(top2_scores[:, 1] - top2_scores[:, 0], axis=1)
|