Spaces:
Configuration error
Configuration error
File size: 41,289 Bytes
1ab1a09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 |
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import math
import cv2
import numpy as np
from PIL import Image
from paddleseg.cvlibs import manager
from paddleseg.transforms import functional
@manager.TRANSFORMS.add_component
class Compose:
"""
Do transformation on input data with corresponding pre-processing and augmentation operations.
The shape of input data to all operations is [height, width, channels].
Args:
transforms (list): A list contains data pre-processing or augmentation. Empty list means only reading images, no transformation.
to_rgb (bool, optional): If converting image to RGB color space. Default: True.
Raises:
TypeError: When 'transforms' is not a list.
ValueError: when the length of 'transforms' is less than 1.
"""
def __init__(self, transforms, to_rgb=True):
if not isinstance(transforms, list):
raise TypeError('The transforms must be a list!')
self.transforms = transforms
self.to_rgb = to_rgb
def __call__(self, data):
"""
Args:
data: A dict to deal with. It may include keys: 'img', 'label', 'trans_info' and 'gt_fields'.
'trans_info' reserve the image shape informating. And the 'gt_fields' save the key need to transforms
together with 'img'
Returns: A dict after process。
"""
if 'img' not in data.keys():
raise ValueError("`data` must include `img` key.")
if isinstance(data['img'], str):
data['img'] = cv2.imread(data['img']).astype('float32')
if data['img'] is None:
raise ValueError('Can\'t read The image file {}!'.format(data[
'img']))
if not isinstance(data['img'], np.ndarray):
raise TypeError("Image type is not numpy.")
if len(data['img'].shape) != 3:
raise ValueError('Image is not 3-dimensional.')
if 'label' in data.keys() and isinstance(data['label'], str):
data['label'] = np.asarray(Image.open(data['label']))
if self.to_rgb:
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB)
# the `trans_info` will save the process of image shape, and will be used in evaluation and prediction.
if 'trans_info' not in data.keys():
data['trans_info'] = []
for op in self.transforms:
data = op(data)
data['img'] = np.transpose(data['img'], (2, 0, 1))
return data
@manager.TRANSFORMS.add_component
class RandomHorizontalFlip:
"""
Flip an image horizontally with a certain probability.
Args:
prob (float, optional): A probability of horizontally flipping. Default: 0.5.
"""
def __init__(self, prob=0.5):
self.prob = prob
def __call__(self, data):
if random.random() < self.prob:
data['img'] = functional.horizontal_flip(data['img'])
for key in data.get('gt_fields', []):
data[key] = functional.horizontal_flip(data[key])
return data
@manager.TRANSFORMS.add_component
class RandomVerticalFlip:
"""
Flip an image vertically with a certain probability.
Args:
prob (float, optional): A probability of vertical flipping. Default: 0.1.
"""
def __init__(self, prob=0.1):
self.prob = prob
def __call__(self, data):
if random.random() < self.prob:
data['img'] = functional.vertical_flip(data['img'])
for key in data.get('gt_fields', []):
data[key] = functional.vertical_flip(data[key])
return data
@manager.TRANSFORMS.add_component
class Resize:
"""
Resize an image.
Args:
target_size (list|tuple, optional): The target size of image. Default: (512, 512).
interp (str, optional): The interpolation mode of resize is consistent with opencv.
['NEAREST', 'LINEAR', 'CUBIC', 'AREA', 'LANCZOS4', 'RANDOM']. Note that when it is
'RANDOM', a random interpolation mode would be specified. Default: "LINEAR".
Raises:
TypeError: When 'target_size' type is neither list nor tuple.
ValueError: When "interp" is out of pre-defined methods ('NEAREST', 'LINEAR', 'CUBIC',
'AREA', 'LANCZOS4', 'RANDOM').
"""
# The interpolation mode
interp_dict = {
'NEAREST': cv2.INTER_NEAREST,
'LINEAR': cv2.INTER_LINEAR,
'CUBIC': cv2.INTER_CUBIC,
'AREA': cv2.INTER_AREA,
'LANCZOS4': cv2.INTER_LANCZOS4
}
def __init__(self, target_size=(512, 512), interp='LINEAR'):
self.interp = interp
if not (interp == "RANDOM" or interp in self.interp_dict):
raise ValueError("`interp` should be one of {}".format(
self.interp_dict.keys()))
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
.format(type(target_size)))
self.target_size = target_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
if self.interp == "RANDOM":
interp = random.choice(list(self.interp_dict.keys()))
else:
interp = self.interp
data['img'] = functional.resize(data['img'], self.target_size,
self.interp_dict[interp])
for key in data.get('gt_fields', []):
data[key] = functional.resize(data[key], self.target_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeByLong:
"""
Resize the long side of an image to given size, and then scale the other side proportionally.
Args:
long_size (int): The target size of long side.
"""
def __init__(self, long_size):
self.long_size = long_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_long(data['img'], self.long_size)
for key in data.get('gt_fields', []):
data[key] = functional.resize_long(data[key], self.long_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeByShort:
"""
Resize the short side of an image to given size, and then scale the other side proportionally.
Args:
short_size (int): The target size of short side.
"""
def __init__(self, short_size):
self.short_size = short_size
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
data['img'] = functional.resize_short(data['img'], self.short_size)
for key in data.get('gt_fields', []):
data[key] = functional.resize_short(data[key], self.short_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class LimitLong:
"""
Limit the long edge of image.
If the long edge is larger than max_long, resize the long edge
to max_long, while scale the short edge proportionally.
If the long edge is smaller than min_long, resize the long edge
to min_long, while scale the short edge proportionally.
Args:
max_long (int, optional): If the long edge of image is larger than max_long,
it will be resize to max_long. Default: None.
min_long (int, optional): If the long edge of image is smaller than min_long,
it will be resize to min_long. Default: None.
"""
def __init__(self, max_long=None, min_long=None):
if max_long is not None:
if not isinstance(max_long, int):
raise TypeError(
"Type of `max_long` is invalid. It should be int, but it is {}"
.format(type(max_long)))
if min_long is not None:
if not isinstance(min_long, int):
raise TypeError(
"Type of `min_long` is invalid. It should be int, but it is {}"
.format(type(min_long)))
if (max_long is not None) and (min_long is not None):
if min_long > max_long:
raise ValueError(
'`max_long should not smaller than min_long, but they are {} and {}'
.format(max_long, min_long))
self.max_long = max_long
self.min_long = min_long
def __call__(self, data):
data['trans_info'].append(('resize', data['img'].shape[0:2]))
h, w = data['img'].shape[0], data['img'].shape[1]
long_edge = max(h, w)
target = long_edge
if (self.max_long is not None) and (long_edge > self.max_long):
target = self.max_long
elif (self.min_long is not None) and (long_edge < self.min_long):
target = self.min_long
if target != long_edge:
data['img'] = functional.resize_long(data['img'], target)
for key in data.get('gt_fields', []):
data[key] = functional.resize_long(data[key], target,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeRangeScaling:
"""
Resize the long side of an image into a range, and then scale the other side proportionally.
Args:
min_value (int, optional): The minimum value of long side after resize. Default: 400.
max_value (int, optional): The maximum value of long side after resize. Default: 600.
"""
def __init__(self, min_value=400, max_value=600):
if min_value > max_value:
raise ValueError('min_value must be less than max_value, '
'but they are {} and {}.'.format(min_value,
max_value))
self.min_value = min_value
self.max_value = max_value
def __call__(self, data):
if self.min_value == self.max_value:
random_size = self.max_value
else:
random_size = int(
np.random.uniform(self.min_value, self.max_value) + 0.5)
data['img'] = functional.resize_long(data['img'], random_size,
cv2.INTER_LINEAR)
for key in data.get('gt_fields', []):
data[key] = functional.resize_long(data[key], random_size,
cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class ResizeStepScaling:
"""
Scale an image proportionally within a range.
Args:
min_scale_factor (float, optional): The minimum scale. Default: 0.75.
max_scale_factor (float, optional): The maximum scale. Default: 1.25.
scale_step_size (float, optional): The scale interval. Default: 0.25.
Raises:
ValueError: When min_scale_factor is smaller than max_scale_factor.
"""
def __init__(self,
min_scale_factor=0.75,
max_scale_factor=1.25,
scale_step_size=0.25):
if min_scale_factor > max_scale_factor:
raise ValueError(
'min_scale_factor must be less than max_scale_factor, '
'but they are {} and {}.'.format(min_scale_factor,
max_scale_factor))
self.min_scale_factor = min_scale_factor
self.max_scale_factor = max_scale_factor
self.scale_step_size = scale_step_size
def __call__(self, data):
if self.min_scale_factor == self.max_scale_factor:
scale_factor = self.min_scale_factor
elif self.scale_step_size == 0:
scale_factor = np.random.uniform(self.min_scale_factor,
self.max_scale_factor)
else:
num_steps = int((self.max_scale_factor - self.min_scale_factor) /
self.scale_step_size + 1)
scale_factors = np.linspace(self.min_scale_factor,
self.max_scale_factor,
num_steps).tolist()
np.random.shuffle(scale_factors)
scale_factor = scale_factors[0]
w = int(round(scale_factor * data['img'].shape[1]))
h = int(round(scale_factor * data['img'].shape[0]))
data['img'] = functional.resize(data['img'], (w, h), cv2.INTER_LINEAR)
for key in data.get('gt_fields', []):
data[key] = functional.resize(data[key], (w, h), cv2.INTER_NEAREST)
return data
@manager.TRANSFORMS.add_component
class Normalize:
"""
Normalize an image.
Args:
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5].
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5].
Raises:
ValueError: When mean/std is not list or any value in std is 0.
"""
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)):
self.mean = mean
self.std = std
if not (isinstance(self.mean,
(list, tuple)) and isinstance(self.std,
(list, tuple))):
raise ValueError(
"{}: input type is invalid. It should be list or tuple".format(
self))
from functools import reduce
if reduce(lambda x, y: x * y, self.std) == 0:
raise ValueError('{}: std is invalid!'.format(self))
def __call__(self, data):
mean = np.array(self.mean)[np.newaxis, np.newaxis, :]
std = np.array(self.std)[np.newaxis, np.newaxis, :]
data['img'] = functional.normalize(data['img'], mean, std)
return data
@manager.TRANSFORMS.add_component
class Padding:
"""
Add bottom-right padding to a raw image or annotation image.
Args:
target_size (list|tuple): The target size after padding.
im_padding_value (list, optional): The padding value of raw image.
Default: [127.5, 127.5, 127.5].
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When target_size is neither list nor tuple.
ValueError: When the length of target_size is not 2.
"""
def __init__(self,
target_size,
im_padding_value=(127.5, 127.5, 127.5),
label_padding_value=255):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of target_size is invalid. It should be list or tuple, now is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
data['trans_info'].append(('padding', data['img'].shape[0:2]))
im_height, im_width = data['img'].shape[0], data['img'].shape[1]
if isinstance(self.target_size, int):
target_height = self.target_size
target_width = self.target_size
else:
target_height = self.target_size[1]
target_width = self.target_size[0]
pad_height = target_height - im_height
pad_width = target_width - im_width
if pad_height < 0 or pad_width < 0:
raise ValueError(
'The size of image should be less than `target_size`, but the size of image ({}, {}) is larger than `target_size` ({}, {})'
.format(im_width, im_height, target_width, target_height))
else:
data['img'] = cv2.copyMakeBorder(
data['img'],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.im_padding_value)
for key in data.get('gt_fields', []):
data[key] = cv2.copyMakeBorder(
data[key],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.label_padding_value)
return data
@manager.TRANSFORMS.add_component
class PaddingByAspectRatio:
"""
Args:
aspect_ratio (int|float, optional): The aspect ratio = width / height. Default: 1.
"""
def __init__(self,
aspect_ratio=1,
im_padding_value=(127.5, 127.5, 127.5),
label_padding_value=255):
self.aspect_ratio = aspect_ratio
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
ratio = img_width / img_height
if ratio == self.aspect_ratio:
return data
elif ratio > self.aspect_ratio:
img_height = int(img_width / self.aspect_ratio)
else:
img_width = int(img_height * self.aspect_ratio)
padding = Padding(
(img_width, img_height),
im_padding_value=self.im_padding_value,
label_padding_value=self.label_padding_value)
return padding(data)
@manager.TRANSFORMS.add_component
class RandomPaddingCrop:
"""
Crop a sub-image from a raw image and annotation image randomly. If the target cropping size
is larger than original image, then the bottom-right padding will be added.
Args:
crop_size (tuple, optional): The target cropping size. Default: (512, 512).
im_padding_value (list, optional): The padding value of raw image.
Default: [127.5, 127.5, 127.5].
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When crop_size is neither list nor tuple.
ValueError: When the length of crop_size is not 2.
"""
def __init__(self,
crop_size=(512, 512),
im_padding_value=(127.5, 127.5, 127.5),
label_padding_value=255):
if isinstance(crop_size, list) or isinstance(crop_size, tuple):
if len(crop_size) != 2:
raise ValueError(
'Type of `crop_size` is list or tuple. It should include 2 elements, but it is {}'
.format(crop_size))
else:
raise TypeError(
"The type of `crop_size` is invalid. It should be list or tuple, but it is {}"
.format(type(crop_size)))
self.crop_size = crop_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
if isinstance(self.crop_size, int):
crop_width = self.crop_size
crop_height = self.crop_size
else:
crop_width = self.crop_size[0]
crop_height = self.crop_size[1]
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
if img_height == crop_height and img_width == crop_width:
return data
else:
pad_height = max(crop_height - img_height, 0)
pad_width = max(crop_width - img_width, 0)
if (pad_height > 0 or pad_width > 0):
data['img'] = cv2.copyMakeBorder(
data['img'],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.im_padding_value)
for key in data.get('gt_fields', []):
data[key] = cv2.copyMakeBorder(
data[key],
0,
pad_height,
0,
pad_width,
cv2.BORDER_CONSTANT,
value=self.label_padding_value)
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
if crop_height > 0 and crop_width > 0:
h_off = np.random.randint(img_height - crop_height + 1)
w_off = np.random.randint(img_width - crop_width + 1)
data['img'] = data['img'][h_off:(crop_height + h_off), w_off:(
w_off + crop_width), :]
for key in data.get('gt_fields', []):
data[key] = data[key][h_off:(crop_height + h_off), w_off:(
w_off + crop_width)]
return data
@manager.TRANSFORMS.add_component
class RandomCenterCrop:
"""
Crops the given the input data at the center.
Args:
retain_ratio (tuple or list, optional): The length of the input list or tuple must be 2. Default: (0.5, 0.5).
the first value is used for width and the second is for height.
In addition, the minimum size of the cropped image is [width * retain_ratio[0], height * retain_ratio[1]].
Raises:
TypeError: When retain_ratio is neither list nor tuple. Default: None.
ValueError: When the value of retain_ratio is not in [0-1].
"""
def __init__(self, retain_ratio=(0.5, 0.5)):
if isinstance(retain_ratio, list) or isinstance(retain_ratio, tuple):
if len(retain_ratio) != 2:
raise ValueError(
'When type of `retain_ratio` is list or tuple, it shoule include 2 elements, but it is {}'
.format(retain_ratio))
if retain_ratio[0] > 1 or retain_ratio[1] > 1 or retain_ratio[
0] < 0 or retain_ratio[1] < 0:
raise ValueError(
'Value of `retain_ratio` should be in [0, 1], but it is {}'.
format(retain_ratio))
else:
raise TypeError(
"The type of `retain_ratio` is invalid. It should be list or tuple, but it is {}"
.format(type(retain_ratio)))
self.retain_ratio = retain_ratio
def __call__(self, data):
retain_width = self.retain_ratio[0]
retain_height = self.retain_ratio[1]
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
if retain_width == 1. and retain_height == 1.:
return data
else:
randw = np.random.randint(img_width * (1 - retain_width))
randh = np.random.randint(img_height * (1 - retain_height))
offsetw = 0 if randw == 0 else np.random.randint(randw)
offseth = 0 if randh == 0 else np.random.randint(randh)
p0, p1, p2, p3 = offseth, img_height + offseth - randh, offsetw, img_width + offsetw - randw
data['img'] = data['img'][p0:p1, p2:p3, :]
for key in data.get('gt_fields', []):
data[key] = data[key][p0:p1, p2:p3]
return data
@manager.TRANSFORMS.add_component
class ScalePadding:
"""
Add center padding to a raw image or annotation image,then scale the
image to target size.
Args:
target_size (list|tuple, optional): The target size of image. Default: (512, 512).
im_padding_value (list, optional): The padding value of raw image.
Default: [127.5, 127.5, 127.5].
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
Raises:
TypeError: When target_size is neither list nor tuple.
ValueError: When the length of target_size is not 2.
"""
def __init__(self,
target_size=(512, 512),
im_padding_value=(127.5, 127.5, 127.5),
label_padding_value=255):
if isinstance(target_size, list) or isinstance(target_size, tuple):
if len(target_size) != 2:
raise ValueError(
'`target_size` should include 2 elements, but it is {}'.
format(target_size))
else:
raise TypeError(
"Type of `target_size` is invalid. It should be list or tuple, but it is {}"
.format(type(target_size)))
self.target_size = target_size
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
height = data['img'].shape[0]
width = data['img'].shape[1]
new_im = np.zeros(
(max(height, width), max(height, width), 3)) + self.im_padding_value
if 'label' in data['gt_fields']:
new_label = np.zeros((max(height, width), max(height, width)
)) + self.label_padding_value
if height > width:
padding = int((height - width) / 2)
new_im[:, padding:padding + width, :] = data['img']
if 'label' in data['gt_fields']:
new_label[:, padding:padding + width] = data['label']
else:
padding = int((width - height) / 2)
new_im[padding:padding + height, :, :] = data['img']
if 'label' in data['gt_fields']:
new_label[padding:padding + height, :] = data['label']
data['img'] = np.uint8(new_im)
data['img'] = functional.resize(
data['img'], self.target_size, interp=cv2.INTER_CUBIC)
if 'label' in data['gt_fields']:
data['label'] = np.uint8(new_label)
data['label'] = functional.resize(
data['label'], self.target_size, interp=cv2.INTER_CUBIC)
return data
@manager.TRANSFORMS.add_component
class RandomNoise:
"""
Superimposing noise on an image with a certain probability.
Args:
prob (float, optional): A probability of blurring an image. Default: 0.5.
max_sigma(float, optional): The maximum value of standard deviation of the distribution.
Default: 10.0.
"""
def __init__(self, prob=0.5, max_sigma=10.0):
self.prob = prob
self.max_sigma = max_sigma
def __call__(self, data):
if random.random() < self.prob:
mu = 0
sigma = random.random() * self.max_sigma
data['img'] = np.array(data['img'], dtype=np.float32)
data['img'] += np.random.normal(mu, sigma, data['img'].shape)
data['img'][data['img'] > 255] = 255
data['img'][data['img'] < 0] = 0
return data
@manager.TRANSFORMS.add_component
class RandomBlur:
"""
Blurring an image by a Gaussian function with a certain probability.
Args:
prob (float, optional): A probability of blurring an image. Default: 0.1.
blur_type(str, optional): A type of blurring an image,
gaussian stands for cv2.GaussianBlur,
median stands for cv2.medianBlur,
blur stands for cv2.blur,
random represents randomly selected from above.
Default: gaussian.
"""
def __init__(self, prob=0.1, blur_type="gaussian"):
self.prob = prob
self.blur_type = blur_type
def __call__(self, data):
if self.prob <= 0:
n = 0
elif self.prob >= 1:
n = 1
else:
n = int(1.0 / self.prob)
if n > 0:
if np.random.randint(0, n) == 0:
radius = np.random.randint(3, 10)
if radius % 2 != 1:
radius = radius + 1
if radius > 9:
radius = 9
data['img'] = np.array(data['img'], dtype='uint8')
if self.blur_type == "gaussian":
data['img'] = cv2.GaussianBlur(data['img'],
(radius, radius), 0, 0)
elif self.blur_type == "median":
data['img'] = cv2.medianBlur(data['img'], radius)
elif self.blur_type == "blur":
data['img'] = cv2.blur(data['img'], (radius, radius))
elif self.blur_type == "random":
select = random.random()
if select < 0.3:
data['img'] = cv2.GaussianBlur(data['img'],
(radius, radius), 0)
elif select < 0.6:
data['img'] = cv2.medianBlur(data['img'], radius)
else:
data['img'] = cv2.blur(data['img'], (radius, radius))
else:
data['img'] = cv2.GaussianBlur(data['img'],
(radius, radius), 0, 0)
data['img'] = np.array(data['img'], dtype='float32')
return data
@manager.TRANSFORMS.add_component
class RandomRotation:
"""
Rotate an image randomly with padding.
Args:
max_rotation (float, optional): The maximum rotation degree. Default: 15.
im_padding_value (list, optional): The padding value of raw image.
Default: [127.5, 127.5, 127.5].
label_padding_value (int, optional): The padding value of annotation image. Default: 255.
"""
def __init__(self,
max_rotation=15,
im_padding_value=(127.5, 127.5, 127.5),
label_padding_value=255):
self.max_rotation = max_rotation
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
if self.max_rotation > 0:
(h, w) = data['img'].shape[:2]
do_rotation = np.random.uniform(-self.max_rotation,
self.max_rotation)
pc = (w // 2, h // 2)
r = cv2.getRotationMatrix2D(pc, do_rotation, 1.0)
cos = np.abs(r[0, 0])
sin = np.abs(r[0, 1])
nw = int((h * sin) + (w * cos))
nh = int((h * cos) + (w * sin))
(cx, cy) = pc
r[0, 2] += (nw / 2) - cx
r[1, 2] += (nh / 2) - cy
dsize = (nw, nh)
data['img'] = cv2.warpAffine(
data['img'],
r,
dsize=dsize,
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.im_padding_value)
for key in data.get('gt_fields', []):
data[key] = cv2.warpAffine(
data[key],
r,
dsize=dsize,
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.label_padding_value)
return data
@manager.TRANSFORMS.add_component
class RandomScaleAspect:
"""
Crop a sub-image from an original image with a range of area ratio and aspect and
then scale the sub-image back to the size of the original image.
Args:
min_scale (float, optional): The minimum area ratio of cropped image to the original image. Default: 0.5.
aspect_ratio (float, optional): The minimum aspect ratio. Default: 0.33.
"""
def __init__(self, min_scale=0.5, aspect_ratio=0.33):
self.min_scale = min_scale
self.aspect_ratio = aspect_ratio
def __call__(self, data):
if self.min_scale != 0 and self.aspect_ratio != 0:
img_height = data['img'].shape[0]
img_width = data['img'].shape[1]
for i in range(0, 10):
area = img_height * img_width
target_area = area * np.random.uniform(self.min_scale, 1.0)
aspectRatio = np.random.uniform(self.aspect_ratio,
1.0 / self.aspect_ratio)
dw = int(np.sqrt(target_area * 1.0 * aspectRatio))
dh = int(np.sqrt(target_area * 1.0 / aspectRatio))
if (np.random.randint(10) < 5):
tmp = dw
dw = dh
dh = tmp
if (dh < img_height and dw < img_width):
h1 = np.random.randint(0, img_height - dh)
w1 = np.random.randint(0, img_width - dw)
data['img'] = data['img'][h1:(h1 + dh), w1:(w1 + dw), :]
data['img'] = cv2.resize(
data['img'], (img_width, img_height),
interpolation=cv2.INTER_LINEAR)
for key in data.get('gt_fields', []):
data[key] = data[key][h1:(h1 + dh), w1:(w1 + dw)]
data[key] = cv2.resize(
data[key], (img_width, img_height),
interpolation=cv2.INTER_NEAREST)
break
return data
@manager.TRANSFORMS.add_component
class RandomDistort:
"""
Distort an image with random configurations.
Args:
brightness_range (float, optional): A range of brightness. Default: 0.5.
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5.
contrast_range (float, optional): A range of contrast. Default: 0.5.
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5.
saturation_range (float, optional): A range of saturation. Default: 0.5.
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5.
hue_range (int, optional): A range of hue. Default: 18.
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5.
sharpness_range (float, optional): A range of sharpness. Default: 0.5.
sharpness_prob (float, optional): A probability of adjusting saturation. Default: 0.
"""
def __init__(self,
brightness_range=0.5,
brightness_prob=0.5,
contrast_range=0.5,
contrast_prob=0.5,
saturation_range=0.5,
saturation_prob=0.5,
hue_range=18,
hue_prob=0.5,
sharpness_range=0.5,
sharpness_prob=0):
self.brightness_range = brightness_range
self.brightness_prob = brightness_prob
self.contrast_range = contrast_range
self.contrast_prob = contrast_prob
self.saturation_range = saturation_range
self.saturation_prob = saturation_prob
self.hue_range = hue_range
self.hue_prob = hue_prob
self.sharpness_range = sharpness_range
self.sharpness_prob = sharpness_prob
def __call__(self, data):
brightness_lower = 1 - self.brightness_range
brightness_upper = 1 + self.brightness_range
contrast_lower = 1 - self.contrast_range
contrast_upper = 1 + self.contrast_range
saturation_lower = 1 - self.saturation_range
saturation_upper = 1 + self.saturation_range
hue_lower = -self.hue_range
hue_upper = self.hue_range
sharpness_lower = 1 - self.sharpness_range
sharpness_upper = 1 + self.sharpness_range
ops = [
functional.brightness, functional.contrast, functional.saturation,
functional.hue, functional.sharpness
]
random.shuffle(ops)
params_dict = {
'brightness': {
'brightness_lower': brightness_lower,
'brightness_upper': brightness_upper
},
'contrast': {
'contrast_lower': contrast_lower,
'contrast_upper': contrast_upper
},
'saturation': {
'saturation_lower': saturation_lower,
'saturation_upper': saturation_upper
},
'hue': {
'hue_lower': hue_lower,
'hue_upper': hue_upper
},
'sharpness': {
'sharpness_lower': sharpness_lower,
'sharpness_upper': sharpness_upper,
}
}
prob_dict = {
'brightness': self.brightness_prob,
'contrast': self.contrast_prob,
'saturation': self.saturation_prob,
'hue': self.hue_prob,
'sharpness': self.sharpness_prob
}
data['img'] = data['img'].astype('uint8')
data['img'] = Image.fromarray(data['img'])
for id in range(len(ops)):
params = params_dict[ops[id].__name__]
prob = prob_dict[ops[id].__name__]
params['im'] = data['img']
if np.random.uniform(0, 1) < prob:
data['img'] = ops[id](**params)
data['img'] = np.asarray(data['img']).astype('float32')
return data
@manager.TRANSFORMS.add_component
class RandomAffine:
"""
Affine transform an image with random configurations.
Args:
size (tuple, optional): The target size after affine transformation. Default: (224, 224).
translation_offset (float, optional): The maximum translation offset. Default: 0.
max_rotation (float, optional): The maximum rotation degree. Default: 15.
min_scale_factor (float, optional): The minimum scale. Default: 0.75.
max_scale_factor (float, optional): The maximum scale. Default: 1.25.
im_padding_value (float, optional): The padding value of raw image. Default: (128, 128, 128).
label_padding_value (int, optional): The padding value of annotation image. Default: (255, 255, 255).
"""
def __init__(self,
size=(224, 224),
translation_offset=0,
max_rotation=15,
min_scale_factor=0.75,
max_scale_factor=1.25,
im_padding_value=(128, 128, 128),
label_padding_value=255):
self.size = size
self.translation_offset = translation_offset
self.max_rotation = max_rotation
self.min_scale_factor = min_scale_factor
self.max_scale_factor = max_scale_factor
self.im_padding_value = im_padding_value
self.label_padding_value = label_padding_value
def __call__(self, data):
w, h = self.size
bbox = [0, 0, data['img'].shape[1] - 1, data['img'].shape[0] - 1]
x_offset = (random.random() - 0.5) * 2 * self.translation_offset
y_offset = (random.random() - 0.5) * 2 * self.translation_offset
dx = (w - (bbox[2] + bbox[0])) / 2.0
dy = (h - (bbox[3] + bbox[1])) / 2.0
matrix_trans = np.array([[1.0, 0, dx], [0, 1.0, dy], [0, 0, 1.0]])
angle = random.random() * 2 * self.max_rotation - self.max_rotation
scale = random.random() * (self.max_scale_factor - self.min_scale_factor
) + self.min_scale_factor
scale *= np.mean(
[float(w) / (bbox[2] - bbox[0]), float(h) / (bbox[3] - bbox[1])])
alpha = scale * math.cos(angle / 180.0 * math.pi)
beta = scale * math.sin(angle / 180.0 * math.pi)
centerx = w / 2.0 + x_offset
centery = h / 2.0 + y_offset
matrix = np.array(
[[alpha, beta, (1 - alpha) * centerx - beta * centery],
[-beta, alpha, beta * centerx + (1 - alpha) * centery],
[0, 0, 1.0]])
matrix = matrix.dot(matrix_trans)[0:2, :]
data['img'] = cv2.warpAffine(
np.uint8(data['img']),
matrix,
tuple(self.size),
flags=cv2.INTER_LINEAR,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.im_padding_value)
for key in data.get('gt_fields', []):
data[key] = cv2.warpAffine(
np.uint8(data[key]),
matrix,
tuple(self.size),
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=self.label_padding_value)
return data
|