File size: 8,137 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import time

import numpy as np


class Progbar(object):
    """
    Displays a progress bar.
        It refers to https://github.com/keras-team/keras/blob/keras-2/keras/utils/generic_utils.py

    Args:
        target (int): Total number of steps expected, None if unknown.
        width (int): Progress bar width on screen.
        verbose (int): Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
        stateful_metrics (list|tuple): Iterable of string names of metrics that should *not* be
            averaged over time. Metrics in this list will be displayed as-is. All
            others will be averaged by the progbar before display.
        interval (float): Minimum visual progress update interval (in seconds).
        unit_name (str): Display name for step counts (usually "step" or "sample").
    """

    def __init__(self,
                 target,
                 width=30,
                 verbose=1,
                 interval=0.05,
                 stateful_metrics=None,
                 unit_name='step'):
        self.target = target
        self.width = width
        self.verbose = verbose
        self.interval = interval
        self.unit_name = unit_name
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

        self._dynamic_display = (
            (hasattr(sys.stderr, 'isatty') and
             sys.stderr.isatty()) or 'ipykernel' in sys.modules or
            'posix' in sys.modules or 'PYCHARM_HOSTED' in os.environ)
        self._total_width = 0
        self._seen_so_far = 0
        # We use a dict + list to avoid garbage collection
        # issues found in OrderedDict
        self._values = {}
        self._values_order = []
        self._start = time.time()
        self._last_update = 0

    def update(self, current, values=None, finalize=None):
        """
        Updates the progress bar.

        Args:
            current (int): Index of current step.
            values (list): List of tuples: `(name, value_for_last_step)`. If `name` is in
                `stateful_metrics`, `value_for_last_step` will be displayed as-is.
                Else, an average of the metric over time will be displayed.
            finalize (bool): Whether this is the last update for the progress bar. If
                `None`, defaults to `current >= self.target`.
        """

        if finalize is None:
            if self.target is None:
                finalize = False
            else:
                finalize = current >= self.target

        values = values or []
        for k, v in values:
            if k not in self._values_order:
                self._values_order.append(k)
            if k not in self.stateful_metrics:
                # In the case that progress bar doesn't have a target value in the first
                # epoch, both on_batch_end and on_epoch_end will be called, which will
                # cause 'current' and 'self._seen_so_far' to have the same value. Force
                # the minimal value to 1 here, otherwise stateful_metric will be 0s.
                value_base = max(current - self._seen_so_far, 1)
                if k not in self._values:
                    self._values[k] = [v * value_base, value_base]
                else:
                    self._values[k][0] += v * value_base
                    self._values[k][1] += value_base
            else:
                # Stateful metrics output a numeric value. This representation
                # means "take an average from a single value" but keeps the
                # numeric formatting.
                self._values[k] = [v, 1]
        self._seen_so_far = current

        now = time.time()
        info = ' - %.0fs' % (now - self._start)
        if self.verbose == 1:
            if now - self._last_update < self.interval and not finalize:
                return

            prev_total_width = self._total_width
            if self._dynamic_display:
                sys.stderr.write('\b' * prev_total_width)
                sys.stderr.write('\r')
            else:
                sys.stderr.write('\n')

            if self.target is not None:
                numdigits = int(np.log10(self.target)) + 1
                bar = ('%' + str(numdigits) + 'd/%d [') % (current, self.target)
                prog = float(current) / self.target
                prog_width = int(self.width * prog)
                if prog_width > 0:
                    bar += ('=' * (prog_width - 1))
                    if current < self.target:
                        bar += '>'
                    else:
                        bar += '='
                bar += ('.' * (self.width - prog_width))
                bar += ']'
            else:
                bar = '%7d/Unknown' % current

            self._total_width = len(bar)
            sys.stderr.write(bar)

            if current:
                time_per_unit = (now - self._start) / current
            else:
                time_per_unit = 0

            if self.target is None or finalize:
                if time_per_unit >= 1 or time_per_unit == 0:
                    info += ' %.0fs/%s' % (time_per_unit, self.unit_name)
                elif time_per_unit >= 1e-3:
                    info += ' %.0fms/%s' % (time_per_unit * 1e3, self.unit_name)
                else:
                    info += ' %.0fus/%s' % (time_per_unit * 1e6, self.unit_name)
            else:
                eta = time_per_unit * (self.target - current)
                if eta > 3600:
                    eta_format = '%d:%02d:%02d' % (eta // 3600,
                                                   (eta % 3600) // 60, eta % 60)
                elif eta > 60:
                    eta_format = '%d:%02d' % (eta // 60, eta % 60)
                else:
                    eta_format = '%ds' % eta

                info = ' - ETA: %s' % eta_format

            for k in self._values_order:
                info += ' - %s:' % k
                if isinstance(self._values[k], list):
                    avg = np.mean(self._values[k][0] /
                                  max(1, self._values[k][1]))
                    if abs(avg) > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                else:
                    info += ' %s' % self._values[k]

            self._total_width += len(info)
            if prev_total_width > self._total_width:
                info += (' ' * (prev_total_width - self._total_width))

            if finalize:
                info += '\n'

            sys.stderr.write(info)
            sys.stderr.flush()

        elif self.verbose == 2:
            if finalize:
                numdigits = int(np.log10(self.target)) + 1
                count = ('%' + str(numdigits) + 'd/%d') % (current, self.target)
                info = count + info
                for k in self._values_order:
                    info += ' - %s:' % k
                    avg = np.mean(self._values[k][0] /
                                  max(1, self._values[k][1]))
                    if avg > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                info += '\n'

                sys.stderr.write(info)
                sys.stderr.flush()

        self._last_update = now

    def add(self, n, values=None):
        self.update(self._seen_so_far + n, values)