File size: 4,750 Bytes
1ab1a09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import cv2
import numpy as np
from PIL import Image as PILImage


def visualize(image, result, color_map, save_dir=None, weight=0.6):
    """
    Convert predict result to color image, and save added image.

    Args:
        image (str): The path of origin image.
        result (np.ndarray): The predict result of image.
        color_map (list): The color used to save the prediction results.
        save_dir (str): The directory for saving visual image. Default: None.
        weight (float): The image weight of visual image, and the result weight is (1 - weight). Default: 0.6

    Returns:
        vis_result (np.ndarray): If `save_dir` is None, return the visualized result.
    """

    color_map = [color_map[i:i + 3] for i in range(0, len(color_map), 3)]
    color_map = np.array(color_map).astype("uint8")
    # Use OpenCV LUT for color mapping
    c1 = cv2.LUT(result, color_map[:, 0])
    c2 = cv2.LUT(result, color_map[:, 1])
    c3 = cv2.LUT(result, color_map[:, 2])
    pseudo_img = np.dstack((c3, c2, c1))

    im = cv2.imread(image)
    vis_result = cv2.addWeighted(im, weight, pseudo_img, 1 - weight, 0)

    if save_dir is not None:
        if not os.path.exists(save_dir):
            os.makedirs(save_dir)
        image_name = os.path.split(image)[-1]
        out_path = os.path.join(save_dir, image_name)
        cv2.imwrite(out_path, vis_result)
    else:
        return vis_result


def get_pseudo_color_map(pred, color_map=None):
    """
    Get the pseudo color image.

    Args:
        pred (numpy.ndarray): the origin predicted image.
        color_map (list, optional): the palette color map. Default: None,
            use paddleseg's default color map.

    Returns:
        (numpy.ndarray): the pseduo image.
    """
    pred_mask = PILImage.fromarray(pred.astype(np.uint8), mode='P')
    if color_map is None:
        color_map = get_color_map_list(256)
    pred_mask.putpalette(color_map)
    return pred_mask


def get_color_map_list(num_classes, custom_color=None):
    """
    Returns the color map for visualizing the segmentation mask,
    which can support arbitrary number of classes.

    Args:
        num_classes (int): Number of classes.
        custom_color (list, optional): Save images with a custom color map. Default: None, use paddleseg's default color map.

    Returns:
        (list). The color map.
    """

    num_classes += 1
    color_map = num_classes * [0, 0, 0]
    for i in range(0, num_classes):
        j = 0
        lab = i
        while lab:
            color_map[i * 3] |= (((lab >> 0) & 1) << (7 - j))
            color_map[i * 3 + 1] |= (((lab >> 1) & 1) << (7 - j))
            color_map[i * 3 + 2] |= (((lab >> 2) & 1) << (7 - j))
            j += 1
            lab >>= 3
    color_map = color_map[3:]

    if custom_color:
        color_map[:len(custom_color)] = custom_color
    return color_map


def paste_images(image_list):
    """
    Paste all image to a image.
    Args:
        image_list (List or Tuple): The images to be pasted and their size are the same.
    Returns:
        result_img (PIL.Image): The pasted image.
    """
    assert isinstance(image_list,
                      (list, tuple)), "image_list should be a list or tuple"
    assert len(
        image_list) > 1, "The length of image_list should be greater than 1"

    pil_img_list = []
    for img in image_list:
        if isinstance(img, str):
            assert os.path.exists(img), "The image is not existed: {}".format(
                img)
            img = PILImage.open(img)
            img = np.array(img)
        elif isinstance(img, np.ndarray):
            img = PILImage.fromarray(img)
        pil_img_list.append(img)

    sample_img = pil_img_list[0]
    size = sample_img.size
    for img in pil_img_list:
        assert size == img.size, "The image size in image_list should be the same"

    width, height = sample_img.size
    result_img = PILImage.new(sample_img.mode,
                              (width * len(pil_img_list), height))
    for i, img in enumerate(pil_img_list):
        result_img.paste(img, box=(width * i, 0))

    return result_img