Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import time | |
from collections import deque | |
import shutil | |
import paddle | |
import paddle.nn.functional as F | |
from paddleseg.utils import (TimeAverager, calculate_eta, resume, logger, | |
worker_init_fn, train_profiler, op_flops_funs) | |
from paddleseg.core.val import evaluate | |
def check_logits_losses(logits_list, losses): | |
len_logits = len(logits_list) | |
len_losses = len(losses['types']) | |
if len_logits != len_losses: | |
raise RuntimeError( | |
'The length of logits_list should equal to the types of loss config: {} != {}.' | |
.format(len_logits, len_losses)) | |
def loss_computation(logits_list, labels, edges, losses): | |
check_logits_losses(logits_list, losses) | |
loss_list = [] | |
for i in range(len(logits_list)): | |
logits = logits_list[i] | |
loss_i = losses['types'][i] | |
coef_i = losses['coef'][i] | |
if loss_i.__class__.__name__ in ('BCELoss', ) and loss_i.edge_label: | |
# Use edges as labels According to loss type. | |
loss_list.append(coef_i * loss_i(logits, edges)) | |
elif loss_i.__class__.__name__ == 'MixedLoss': | |
mixed_loss_list = loss_i(logits, labels) | |
for mixed_loss in mixed_loss_list: | |
loss_list.append(coef_i * mixed_loss) | |
elif loss_i.__class__.__name__ in ("KLLoss", ): | |
loss_list.append(coef_i * | |
loss_i(logits_list[0], logits_list[1].detach())) | |
else: | |
loss_list.append(coef_i * loss_i(logits, labels)) | |
return loss_list | |
def train(model, | |
train_dataset, | |
val_dataset=None, | |
optimizer=None, | |
save_dir='output', | |
iters=10000, | |
batch_size=2, | |
resume_model=None, | |
save_interval=1000, | |
log_iters=10, | |
num_workers=0, | |
use_vdl=False, | |
losses=None, | |
keep_checkpoint_max=5, | |
test_config=None, | |
precision='fp32', | |
amp_level='O1', | |
profiler_options=None, | |
to_static_training=False): | |
""" | |
Launch training. | |
Args: | |
model(nn.Layer): A semantic segmentation model. | |
train_dataset (paddle.io.Dataset): Used to read and process training datasets. | |
val_dataset (paddle.io.Dataset, optional): Used to read and process validation datasets. | |
optimizer (paddle.optimizer.Optimizer): The optimizer. | |
save_dir (str, optional): The directory for saving the model snapshot. Default: 'output'. | |
iters (int, optional): How may iters to train the model. Defualt: 10000. | |
batch_size (int, optional): Mini batch size of one gpu or cpu. Default: 2. | |
resume_model (str, optional): The path of resume model. | |
save_interval (int, optional): How many iters to save a model snapshot once during training. Default: 1000. | |
log_iters (int, optional): Display logging information at every log_iters. Default: 10. | |
num_workers (int, optional): Num workers for data loader. Default: 0. | |
use_vdl (bool, optional): Whether to record the data to VisualDL during training. Default: False. | |
losses (dict, optional): A dict including 'types' and 'coef'. The length of coef should equal to 1 or len(losses['types']). | |
The 'types' item is a list of object of paddleseg.models.losses while the 'coef' item is a list of the relevant coefficient. | |
keep_checkpoint_max (int, optional): Maximum number of checkpoints to save. Default: 5. | |
test_config(dict, optional): Evaluation config. | |
precision (str, optional): Use AMP if precision='fp16'. If precision='fp32', the training is normal. | |
amp_level (str, optional): Auto mixed precision level. Accepted values are “O1” and “O2”: O1 represent mixed precision, | |
the input data type of each operator will be casted by white_list and black_list; O2 represent Pure fp16, all operators | |
parameters and input data will be casted to fp16, except operators in black_list, don’t support fp16 kernel and batchnorm. Default is O1(amp) | |
profiler_options (str, optional): The option of train profiler. | |
to_static_training (bool, optional): Whether to use @to_static for training. | |
""" | |
model.train() | |
nranks = paddle.distributed.ParallelEnv().nranks | |
local_rank = paddle.distributed.ParallelEnv().local_rank | |
start_iter = 0 | |
if resume_model is not None: | |
start_iter = resume(model, optimizer, resume_model) | |
if not os.path.isdir(save_dir): | |
if os.path.exists(save_dir): | |
os.remove(save_dir) | |
os.makedirs(save_dir, exist_ok=True) | |
# use amp | |
if precision == 'fp16': | |
logger.info('use AMP to train. AMP level = {}'.format(amp_level)) | |
scaler = paddle.amp.GradScaler(init_loss_scaling=1024) | |
if amp_level == 'O2': | |
model, optimizer = paddle.amp.decorate( | |
models=model, | |
optimizers=optimizer, | |
level='O2', | |
save_dtype='float32') | |
if nranks > 1: | |
paddle.distributed.fleet.init(is_collective=True) | |
optimizer = paddle.distributed.fleet.distributed_optimizer( | |
optimizer) # The return is Fleet object | |
ddp_model = paddle.distributed.fleet.distributed_model(model) | |
batch_sampler = paddle.io.DistributedBatchSampler( | |
train_dataset, batch_size=batch_size, shuffle=True, drop_last=True) | |
loader = paddle.io.DataLoader( | |
train_dataset, | |
batch_sampler=batch_sampler, | |
num_workers=num_workers, | |
return_list=True, | |
worker_init_fn=worker_init_fn, ) | |
if use_vdl: | |
from visualdl import LogWriter | |
log_writer = LogWriter(save_dir) | |
if to_static_training: | |
model = paddle.jit.to_static(model) | |
logger.info("Successfully applied @to_static") | |
avg_loss = 0.0 | |
avg_loss_list = [] | |
iters_per_epoch = len(batch_sampler) | |
best_mean_iou = -1.0 | |
best_model_iter = -1 | |
reader_cost_averager = TimeAverager() | |
batch_cost_averager = TimeAverager() | |
save_models = deque() | |
batch_start = time.time() | |
iter = start_iter | |
while iter < iters: | |
for data in loader: | |
iter += 1 | |
if iter > iters: | |
version = paddle.__version__ | |
if version == '2.1.2': | |
continue | |
else: | |
break | |
reader_cost_averager.record(time.time() - batch_start) | |
images = data['img'] | |
labels = data['label'].astype('int64') | |
edges = None | |
if 'edge' in data.keys(): | |
edges = data['edge'].astype('int64') | |
if hasattr(model, 'data_format') and model.data_format == 'NHWC': | |
images = images.transpose((0, 2, 3, 1)) | |
if precision == 'fp16': | |
with paddle.amp.auto_cast( | |
level=amp_level, | |
enable=True, | |
custom_white_list={ | |
"elementwise_add", "batch_norm", "sync_batch_norm" | |
}, | |
custom_black_list={'bilinear_interp_v2'}): | |
logits_list = ddp_model(images) if nranks > 1 else model( | |
images) | |
loss_list = loss_computation( | |
logits_list=logits_list, | |
labels=labels, | |
edges=edges, | |
losses=losses) | |
loss = sum(loss_list) | |
scaled = scaler.scale(loss) # scale the loss | |
scaled.backward() # do backward | |
if isinstance(optimizer, paddle.distributed.fleet.Fleet): | |
scaler.minimize(optimizer.user_defined_optimizer, scaled) | |
else: | |
scaler.minimize(optimizer, scaled) # update parameters | |
else: | |
logits_list = ddp_model(images) if nranks > 1 else model(images) | |
loss_list = loss_computation( | |
logits_list=logits_list, | |
labels=labels, | |
edges=edges, | |
losses=losses) | |
loss = sum(loss_list) | |
loss.backward() | |
# if the optimizer is ReduceOnPlateau, the loss is the one which has been pass into step. | |
if isinstance(optimizer, paddle.optimizer.lr.ReduceOnPlateau): | |
optimizer.step(loss) | |
else: | |
optimizer.step() | |
lr = optimizer.get_lr() | |
# update lr | |
if isinstance(optimizer, paddle.distributed.fleet.Fleet): | |
lr_sche = optimizer.user_defined_optimizer._learning_rate | |
else: | |
lr_sche = optimizer._learning_rate | |
if isinstance(lr_sche, paddle.optimizer.lr.LRScheduler): | |
lr_sche.step() | |
train_profiler.add_profiler_step(profiler_options) | |
model.clear_gradients() | |
avg_loss += loss.numpy()[0] | |
if not avg_loss_list: | |
avg_loss_list = [l.numpy() for l in loss_list] | |
else: | |
for i in range(len(loss_list)): | |
avg_loss_list[i] += loss_list[i].numpy() | |
batch_cost_averager.record( | |
time.time() - batch_start, num_samples=batch_size) | |
if (iter) % log_iters == 0 and local_rank == 0: | |
avg_loss /= log_iters | |
avg_loss_list = [l[0] / log_iters for l in avg_loss_list] | |
remain_iters = iters - iter | |
avg_train_batch_cost = batch_cost_averager.get_average() | |
avg_train_reader_cost = reader_cost_averager.get_average() | |
eta = calculate_eta(remain_iters, avg_train_batch_cost) | |
logger.info( | |
"[TRAIN] epoch: {}, iter: {}/{}, loss: {:.4f}, lr: {:.6f}, batch_cost: {:.4f}, reader_cost: {:.5f}, ips: {:.4f} samples/sec | ETA {}" | |
.format((iter - 1 | |
) // iters_per_epoch + 1, iter, iters, avg_loss, | |
lr, avg_train_batch_cost, avg_train_reader_cost, | |
batch_cost_averager.get_ips_average(), eta)) | |
if use_vdl: | |
log_writer.add_scalar('Train/loss', avg_loss, iter) | |
# Record all losses if there are more than 2 losses. | |
if len(avg_loss_list) > 1: | |
avg_loss_dict = {} | |
for i, value in enumerate(avg_loss_list): | |
avg_loss_dict['loss_' + str(i)] = value | |
for key, value in avg_loss_dict.items(): | |
log_tag = 'Train/' + key | |
log_writer.add_scalar(log_tag, value, iter) | |
log_writer.add_scalar('Train/lr', lr, iter) | |
log_writer.add_scalar('Train/batch_cost', | |
avg_train_batch_cost, iter) | |
log_writer.add_scalar('Train/reader_cost', | |
avg_train_reader_cost, iter) | |
avg_loss = 0.0 | |
avg_loss_list = [] | |
reader_cost_averager.reset() | |
batch_cost_averager.reset() | |
if (iter % save_interval == 0 or | |
iter == iters) and (val_dataset is not None): | |
num_workers = 1 if num_workers > 0 else 0 | |
if test_config is None: | |
test_config = {} | |
mean_iou, acc, _, _, _ = evaluate( | |
model, | |
val_dataset, | |
num_workers=num_workers, | |
precision=precision, | |
amp_level=amp_level, | |
**test_config) | |
model.train() | |
if (iter % save_interval == 0 or iter == iters) and local_rank == 0: | |
current_save_dir = os.path.join(save_dir, | |
"iter_{}".format(iter)) | |
if not os.path.isdir(current_save_dir): | |
os.makedirs(current_save_dir) | |
paddle.save(model.state_dict(), | |
os.path.join(current_save_dir, 'model.pdparams')) | |
paddle.save(optimizer.state_dict(), | |
os.path.join(current_save_dir, 'model.pdopt')) | |
save_models.append(current_save_dir) | |
if len(save_models) > keep_checkpoint_max > 0: | |
model_to_remove = save_models.popleft() | |
shutil.rmtree(model_to_remove) | |
if val_dataset is not None: | |
if mean_iou > best_mean_iou: | |
best_mean_iou = mean_iou | |
best_model_iter = iter | |
best_model_dir = os.path.join(save_dir, "best_model") | |
paddle.save( | |
model.state_dict(), | |
os.path.join(best_model_dir, 'model.pdparams')) | |
logger.info( | |
'[EVAL] The model with the best validation mIoU ({:.4f}) was saved at iter {}.' | |
.format(best_mean_iou, best_model_iter)) | |
if use_vdl: | |
log_writer.add_scalar('Evaluate/mIoU', mean_iou, iter) | |
log_writer.add_scalar('Evaluate/Acc', acc, iter) | |
batch_start = time.time() | |
# Calculate flops. | |
if local_rank == 0 and not (precision == 'fp16' and amp_level == 'O2'): | |
_, c, h, w = images.shape | |
_ = paddle.flops( | |
model, [1, c, h, w], | |
custom_ops={paddle.nn.SyncBatchNorm: op_flops_funs.count_syncbn}) | |
# Sleep for half a second to let dataloader release resources. | |
time.sleep(0.5) | |
if use_vdl: | |
log_writer.close() | |