Spaces:
Configuration error
Configuration error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from paddleseg.utils.download import download_file_and_uncompress | |
from paddleseg.utils import seg_env | |
from paddleseg.cvlibs import manager | |
from paddleseg.transforms import Compose | |
from paddleseg.datasets import Dataset | |
URL = 'https://bj.bcebos.com/paddleseg/dataset/chase_db1/chase_db1.zip' | |
class CHASEDB1(Dataset): | |
""" | |
CHASE_DB1 dataset is a dataset for retinal vessel segmentation | |
which contains 28 color retina images with the size of 999×960 pixels. | |
It is collected from both left and right eyes of 14 school children. | |
Each image is annotated by two independent human experts, and we choose the labels from 1st expert. | |
(https://blogs.kingston.ac.uk/retinal/chasedb1/) | |
Args: | |
transforms (list): Transforms for image. | |
dataset_root (str): The dataset directory. Default: None | |
edge (bool): whether extract edge infor in the output | |
mode (str, optional): Which part of dataset to use. it is one of ('train', 'val', 'test'). Default: 'train'. | |
""" | |
NUM_CLASSES = 2 | |
def __init__(self, | |
dataset_root=None, | |
transforms=None, | |
edge=False, | |
mode='train'): | |
self.dataset_root = dataset_root | |
self.transforms = Compose(transforms) | |
mode = mode.lower() | |
self.mode = mode | |
self.edge = edge | |
self.file_list = list() | |
self.num_classes = self.NUM_CLASSES | |
self.ignore_index = 255 # labels only have 1/0, thus ignore_index is not necessary | |
if mode not in ['train', 'val', 'test']: | |
raise ValueError( | |
"`mode` should be 'train', 'val' or 'test', but got {}.".format( | |
mode)) | |
if self.transforms is None: | |
raise ValueError("`transforms` is necessary, but it is None.") | |
if self.dataset_root is None: | |
self.dataset_root = download_file_and_uncompress( | |
url=URL, | |
savepath=seg_env.DATA_HOME, | |
extrapath=seg_env.DATA_HOME) | |
elif not os.path.exists(self.dataset_root): | |
self.dataset_root = os.path.normpath(self.dataset_root) | |
savepath, extraname = self.dataset_root.rsplit( | |
sep=os.path.sep, maxsplit=1) | |
self.dataset_root = download_file_and_uncompress( | |
url=URL, | |
savepath=savepath, | |
extrapath=savepath, | |
extraname=extraname) | |
if mode == 'train': | |
file_path = os.path.join(self.dataset_root, 'train_list.txt') | |
elif mode == 'val': | |
file_path = os.path.join(self.dataset_root, 'val_list.txt') | |
with open(file_path, 'r') as f: | |
for line in f: | |
items = line.strip().split() | |
if len(items) != 2: | |
if mode == 'train' or mode == 'val': | |
raise Exception( | |
"File list format incorrect! It should be" | |
" image_name label_name\\n") | |
image_path = os.path.join(self.dataset_root, items[0]) | |
grt_path = None | |
else: | |
image_path = os.path.join(self.dataset_root, items[0]) | |
grt_path = os.path.join(self.dataset_root, items[1]) | |
self.file_list.append([image_path, grt_path]) | |