Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import glob | |
from paddleseg.datasets import Dataset | |
from paddleseg.cvlibs import manager | |
from paddleseg.transforms import Compose | |
class CocoStuff(Dataset): | |
""" | |
COCO-Stuff dataset `https://github.com/nightrome/cocostuff`. | |
The folder structure is as follow: | |
cocostuff | |
| | |
|--images | |
| |--train2017 | |
| |--val2017 | |
| | |
|--annotations | |
| |--train2017 | |
| |--val2017 | |
Args: | |
transforms (list): Transforms for image. | |
dataset_root (str): Cityscapes dataset directory. | |
mode (str): Which part of dataset to use. it is one of ('train', 'val'). Default: 'train'. | |
edge (bool, optional): Whether to compute edge while training. Default: False | |
""" | |
NUM_CLASSES = 171 | |
def __init__(self, transforms, dataset_root, mode='train', edge=False): | |
self.dataset_root = dataset_root | |
self.transforms = Compose(transforms) | |
self.file_list = list() | |
mode = mode.lower() | |
self.mode = mode | |
self.num_classes = self.NUM_CLASSES | |
self.ignore_index = 255 | |
self.edge = edge | |
if mode not in ['train', 'val']: | |
raise ValueError( | |
"mode should be 'train', 'val', but got {}.".format(mode)) | |
if self.transforms is None: | |
raise ValueError("`transforms` is necessary, but it is None.") | |
img_dir = os.path.join(self.dataset_root, 'images') | |
label_dir = os.path.join(self.dataset_root, 'annotations') | |
if self.dataset_root is None or not os.path.isdir( | |
self.dataset_root) or not os.path.isdir( | |
img_dir) or not os.path.isdir(label_dir): | |
raise ValueError( | |
"The dataset is not Found or the folder structure is nonconfoumance." | |
) | |
label_files = sorted( | |
glob.glob(os.path.join(label_dir, mode + '2017', '*.png'))) | |
img_files = sorted( | |
glob.glob(os.path.join(img_dir, mode + '2017', '*.jpg'))) | |
self.file_list = [ | |
[img_path, label_path] | |
for img_path, label_path in zip(img_files, label_files) | |
] | |