Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
from paddleseg.datasets import Dataset | |
from paddleseg.utils.download import download_file_and_uncompress | |
from paddleseg.utils import seg_env | |
from paddleseg.cvlibs import manager | |
from paddleseg.transforms import Compose | |
URL = "http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar" | |
class PascalVOC(Dataset): | |
""" | |
PascalVOC2012 dataset `http://host.robots.ox.ac.uk/pascal/VOC/`. | |
If you want to augment the dataset, please run the voc_augment.py in tools. | |
Args: | |
transforms (list): Transforms for image. | |
dataset_root (str): The dataset directory. Default: None | |
mode (str, optional): Which part of dataset to use. it is one of ('train', 'trainval', 'trainaug', 'val'). | |
If you want to set mode to 'trainaug', please make sure the dataset have been augmented. Default: 'train'. | |
edge (bool, optional): Whether to compute edge while training. Default: False | |
""" | |
NUM_CLASSES = 21 | |
def __init__(self, transforms, dataset_root=None, mode='train', edge=False): | |
self.dataset_root = dataset_root | |
self.transforms = Compose(transforms) | |
mode = mode.lower() | |
self.mode = mode | |
self.file_list = list() | |
self.num_classes = self.NUM_CLASSES | |
self.ignore_index = 255 | |
self.edge = edge | |
if mode not in ['train', 'trainval', 'trainaug', 'val']: | |
raise ValueError( | |
"`mode` should be one of ('train', 'trainval', 'trainaug', 'val') in PascalVOC dataset, but got {}." | |
.format(mode)) | |
if self.transforms is None: | |
raise ValueError("`transforms` is necessary, but it is None.") | |
if self.dataset_root is None: | |
self.dataset_root = download_file_and_uncompress( | |
url=URL, | |
savepath=seg_env.DATA_HOME, | |
extrapath=seg_env.DATA_HOME, | |
extraname='VOCdevkit') | |
elif not os.path.exists(self.dataset_root): | |
self.dataset_root = os.path.normpath(self.dataset_root) | |
savepath, extraname = self.dataset_root.rsplit( | |
sep=os.path.sep, maxsplit=1) | |
self.dataset_root = download_file_and_uncompress( | |
url=URL, | |
savepath=savepath, | |
extrapath=savepath, | |
extraname=extraname) | |
image_set_dir = os.path.join(self.dataset_root, 'VOC2012', 'ImageSets', | |
'Segmentation') | |
if mode == 'train': | |
file_path = os.path.join(image_set_dir, 'train.txt') | |
elif mode == 'val': | |
file_path = os.path.join(image_set_dir, 'val.txt') | |
elif mode == 'trainval': | |
file_path = os.path.join(image_set_dir, 'trainval.txt') | |
elif mode == 'trainaug': | |
file_path = os.path.join(image_set_dir, 'train.txt') | |
file_path_aug = os.path.join(image_set_dir, 'aug.txt') | |
if not os.path.exists(file_path_aug): | |
raise RuntimeError( | |
"When `mode` is 'trainaug', Pascal Voc dataset should be augmented, " | |
"Please make sure voc_augment.py has been properly run when using this mode." | |
) | |
img_dir = os.path.join(self.dataset_root, 'VOC2012', 'JPEGImages') | |
label_dir = os.path.join(self.dataset_root, 'VOC2012', | |
'SegmentationClass') | |
label_dir_aug = os.path.join(self.dataset_root, 'VOC2012', | |
'SegmentationClassAug') | |
with open(file_path, 'r') as f: | |
for line in f: | |
line = line.strip() | |
image_path = os.path.join(img_dir, ''.join([line, '.jpg'])) | |
label_path = os.path.join(label_dir, ''.join([line, '.png'])) | |
self.file_list.append([image_path, label_path]) | |
if mode == 'trainaug': | |
with open(file_path_aug, 'r') as f: | |
for line in f: | |
line = line.strip() | |
image_path = os.path.join(img_dir, ''.join([line, '.jpg'])) | |
label_path = os.path.join(label_dir_aug, | |
''.join([line, '.png'])) | |
self.file_list.append([image_path, label_path]) | |