Spaces:
Configuration error
Configuration error
# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import math | |
from functools import partial | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
import paddle.nn.initializer as paddle_init | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import utils | |
from paddleseg.models.backbones.transformer_utils import * | |
class Mlp(nn.Layer): | |
def __init__(self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.dwconv = DWConv(hidden_features) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop = nn.Dropout(drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
elif isinstance(m, nn.Conv2D): | |
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
fan_out //= m._groups | |
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) | |
if m.bias is not None: | |
zeros_(m.bias) | |
def forward(self, x, H, W): | |
x = self.fc1(x) | |
x = self.dwconv(x, H, W) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
x = self.drop(x) | |
return x | |
class Attention(nn.Layer): | |
def __init__(self, | |
dim, | |
num_heads=8, | |
qkv_bias=False, | |
qk_scale=None, | |
attn_drop=0., | |
proj_drop=0., | |
sr_ratio=1): | |
super().__init__() | |
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." | |
self.dim = dim | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.dim = dim | |
self.q = nn.Linear(dim, dim, bias_attr=qkv_bias) | |
self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.sr_ratio = sr_ratio | |
if sr_ratio > 1: | |
self.sr = nn.Conv2D(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) | |
self.norm = nn.LayerNorm(dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
elif isinstance(m, nn.Conv2D): | |
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
fan_out //= m._groups | |
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) | |
if m.bias is not None: | |
zeros_(m.bias) | |
def forward(self, x, H, W): | |
x_shape = paddle.shape(x) | |
B, N = x_shape[0], x_shape[1] | |
C = self.dim | |
q = self.q(x).reshape([B, N, self.num_heads, | |
C // self.num_heads]).transpose([0, 2, 1, 3]) | |
if self.sr_ratio > 1: | |
x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W]) | |
x_ = self.sr(x_).reshape([B, C, -1]).transpose([0, 2, 1]) | |
x_ = self.norm(x_) | |
kv = self.kv(x_).reshape( | |
[B, -1, 2, self.num_heads, | |
C // self.num_heads]).transpose([2, 0, 3, 1, 4]) | |
else: | |
kv = self.kv(x).reshape( | |
[B, -1, 2, self.num_heads, | |
C // self.num_heads]).transpose([2, 0, 3, 1, 4]) | |
k, v = kv[0], kv[1] | |
attn = (q @k.transpose([0, 1, 3, 2])) * self.scale | |
attn = F.softmax(attn, axis=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @v).transpose([0, 2, 1, 3]).reshape([B, N, C]) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Layer): | |
def __init__(self, | |
dim, | |
num_heads, | |
mlp_ratio=4., | |
qkv_bias=False, | |
qk_scale=None, | |
drop=0., | |
attn_drop=0., | |
drop_path=0., | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
sr_ratio=1): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
sr_ratio=sr_ratio) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
elif isinstance(m, nn.Conv2D): | |
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
fan_out //= m._groups | |
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) | |
if m.bias is not None: | |
zeros_(m.bias) | |
def forward(self, x, H, W): | |
x = x + self.drop_path(self.attn(self.norm1(x), H, W)) | |
x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) | |
return x | |
class OverlapPatchEmbed(nn.Layer): | |
""" Image to Patch Embedding | |
""" | |
def __init__(self, | |
img_size=224, | |
patch_size=7, | |
stride=4, | |
in_chans=3, | |
embed_dim=768): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.H, self.W = img_size[0] // patch_size[0], img_size[ | |
1] // patch_size[1] | |
self.num_patches = self.H * self.W | |
self.proj = nn.Conv2D( | |
in_chans, | |
embed_dim, | |
kernel_size=patch_size, | |
stride=stride, | |
padding=(patch_size[0] // 2, patch_size[1] // 2)) | |
self.norm = nn.LayerNorm(embed_dim) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
elif isinstance(m, nn.Conv2D): | |
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
fan_out //= m._groups | |
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) | |
if m.bias is not None: | |
zeros_(m.bias) | |
def forward(self, x): | |
x = self.proj(x) | |
x_shape = paddle.shape(x) | |
H, W = x_shape[2], x_shape[3] | |
x = x.flatten(2).transpose([0, 2, 1]) | |
x = self.norm(x) | |
return x, H, W | |
class MixVisionTransformer(nn.Layer): | |
def __init__(self, | |
img_size=224, | |
patch_size=16, | |
in_chans=3, | |
num_classes=1000, | |
embed_dims=[64, 128, 256, 512], | |
num_heads=[1, 2, 4, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=False, | |
qk_scale=None, | |
drop_rate=0., | |
attn_drop_rate=0., | |
drop_path_rate=0., | |
norm_layer=nn.LayerNorm, | |
depths=[3, 4, 6, 3], | |
sr_ratios=[8, 4, 2, 1], | |
pretrained=None): | |
super().__init__() | |
self.num_classes = num_classes | |
self.depths = depths | |
self.feat_channels = embed_dims[:] | |
# patch_embed | |
self.patch_embed1 = OverlapPatchEmbed( | |
img_size=img_size, | |
patch_size=7, | |
stride=4, | |
in_chans=in_chans, | |
embed_dim=embed_dims[0]) | |
self.patch_embed2 = OverlapPatchEmbed( | |
img_size=img_size // 4, | |
patch_size=3, | |
stride=2, | |
in_chans=embed_dims[0], | |
embed_dim=embed_dims[1]) | |
self.patch_embed3 = OverlapPatchEmbed( | |
img_size=img_size // 8, | |
patch_size=3, | |
stride=2, | |
in_chans=embed_dims[1], | |
embed_dim=embed_dims[2]) | |
self.patch_embed4 = OverlapPatchEmbed( | |
img_size=img_size // 16, | |
patch_size=3, | |
stride=2, | |
in_chans=embed_dims[2], | |
embed_dim=embed_dims[3]) | |
# transformer encoder | |
dpr = [ | |
x.numpy() for x in paddle.linspace(0, drop_path_rate, sum(depths)) | |
] # stochastic depth decay rule | |
cur = 0 | |
self.block1 = nn.LayerList([ | |
Block( | |
dim=embed_dims[0], | |
num_heads=num_heads[0], | |
mlp_ratio=mlp_ratios[0], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[0]) for i in range(depths[0]) | |
]) | |
self.norm1 = norm_layer(embed_dims[0]) | |
cur += depths[0] | |
self.block2 = nn.LayerList([ | |
Block( | |
dim=embed_dims[1], | |
num_heads=num_heads[1], | |
mlp_ratio=mlp_ratios[1], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[1]) for i in range(depths[1]) | |
]) | |
self.norm2 = norm_layer(embed_dims[1]) | |
cur += depths[1] | |
self.block3 = nn.LayerList([ | |
Block( | |
dim=embed_dims[2], | |
num_heads=num_heads[2], | |
mlp_ratio=mlp_ratios[2], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[2]) for i in range(depths[2]) | |
]) | |
self.norm3 = norm_layer(embed_dims[2]) | |
cur += depths[2] | |
self.block4 = nn.LayerList([ | |
Block( | |
dim=embed_dims[3], | |
num_heads=num_heads[3], | |
mlp_ratio=mlp_ratios[3], | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
drop=drop_rate, | |
attn_drop=attn_drop_rate, | |
drop_path=dpr[cur + i], | |
norm_layer=norm_layer, | |
sr_ratio=sr_ratios[3]) for i in range(depths[3]) | |
]) | |
self.norm4 = norm_layer(embed_dims[3]) | |
self.pretrained = pretrained | |
self.init_weight() | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_pretrained_model(self, self.pretrained) | |
else: | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, nn.Linear): | |
trunc_normal_(m.weight) | |
if isinstance(m, nn.Linear) and m.bias is not None: | |
zeros_(m.bias) | |
elif isinstance(m, nn.LayerNorm): | |
zeros_(m.bias) | |
ones_(m.weight) | |
elif isinstance(m, nn.Conv2D): | |
fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels | |
fan_out //= m._groups | |
paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) | |
if m.bias is not None: | |
zeros_(m.bias) | |
def reset_drop_path(self, drop_path_rate): | |
dpr = [ | |
x.item() | |
for x in paddle.linspace(0, drop_path_rate, sum(self.depths)) | |
] | |
cur = 0 | |
for i in range(self.depths[0]): | |
self.block1[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[0] | |
for i in range(self.depths[1]): | |
self.block2[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[1] | |
for i in range(self.depths[2]): | |
self.block3[i].drop_path.drop_prob = dpr[cur + i] | |
cur += self.depths[2] | |
for i in range(self.depths[3]): | |
self.block4[i].drop_path.drop_prob = dpr[cur + i] | |
def freeze_patch_emb(self): | |
self.patch_embed1.requires_grad = False | |
def get_classifier(self): | |
return self.head | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, | |
num_classes) if num_classes > 0 else nn.Identity() | |
def forward_features(self, x): | |
B = paddle.shape(x)[0] | |
outs = [] | |
# stage 1 | |
x, H, W = self.patch_embed1(x) | |
for i, blk in enumerate(self.block1): | |
x = blk(x, H, W) | |
x = self.norm1(x) | |
x = x.reshape([B, H, W, self.feat_channels[0]]).transpose([0, 3, 1, 2]) | |
outs.append(x) | |
# stage 2 | |
x, H, W = self.patch_embed2(x) | |
for i, blk in enumerate(self.block2): | |
x = blk(x, H, W) | |
x = self.norm2(x) | |
x = x.reshape([B, H, W, self.feat_channels[1]]).transpose([0, 3, 1, 2]) | |
outs.append(x) | |
# stage 3 | |
x, H, W = self.patch_embed3(x) | |
for i, blk in enumerate(self.block3): | |
x = blk(x, H, W) | |
x = self.norm3(x) | |
x = x.reshape([B, H, W, self.feat_channels[2]]).transpose([0, 3, 1, 2]) | |
outs.append(x) | |
# stage 4 | |
x, H, W = self.patch_embed4(x) | |
for i, blk in enumerate(self.block4): | |
x = blk(x, H, W) | |
x = self.norm4(x) | |
x = x.reshape([B, H, W, self.feat_channels[3]]).transpose([0, 3, 1, 2]) | |
outs.append(x) | |
return outs | |
def forward(self, x): | |
x = self.forward_features(x) | |
# x = self.head(x) | |
return x | |
class DWConv(nn.Layer): | |
def __init__(self, dim=768): | |
super(DWConv, self).__init__() | |
self.dim = dim | |
self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim) | |
def forward(self, x, H, W): | |
x_shape = paddle.shape(x) | |
B, N = x_shape[0], x_shape[1] | |
x = x.transpose([0, 2, 1]).reshape([B, self.dim, H, W]) | |
x = self.dwconv(x) | |
x = x.flatten(2).transpose([0, 2, 1]) | |
return x | |
def MixVisionTransformer_B0(**kwargs): | |
return MixVisionTransformer( | |
patch_size=4, | |
embed_dims=[32, 64, 160, 256], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial( | |
nn.LayerNorm, epsilon=1e-6), | |
depths=[2, 2, 2, 2], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
**kwargs) | |
def MixVisionTransformer_B1(**kwargs): | |
return MixVisionTransformer( | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial( | |
nn.LayerNorm, epsilon=1e-6), | |
depths=[2, 2, 2, 2], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
**kwargs) | |
def MixVisionTransformer_B2(**kwargs): | |
return MixVisionTransformer( | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial( | |
nn.LayerNorm, epsilon=1e-6), | |
depths=[3, 4, 6, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
**kwargs) | |
def MixVisionTransformer_B3(**kwargs): | |
return MixVisionTransformer( | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial( | |
nn.LayerNorm, epsilon=1e-6), | |
depths=[3, 4, 18, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
**kwargs) | |
def MixVisionTransformer_B4(**kwargs): | |
return MixVisionTransformer( | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial( | |
nn.LayerNorm, epsilon=1e-6), | |
depths=[3, 8, 27, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
**kwargs) | |
def MixVisionTransformer_B5(**kwargs): | |
return MixVisionTransformer( | |
patch_size=4, | |
embed_dims=[64, 128, 320, 512], | |
num_heads=[1, 2, 5, 8], | |
mlp_ratios=[4, 4, 4, 4], | |
qkv_bias=True, | |
norm_layer=partial( | |
nn.LayerNorm, epsilon=1e-6), | |
depths=[3, 6, 40, 3], | |
sr_ratios=[8, 4, 2, 1], | |
drop_rate=0.0, | |
drop_path_rate=0.1, | |
**kwargs) | |