sidharthism's picture
Added model *.pdparams
1ab1a09
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class GCNet(nn.Layer):
"""
The GCNet implementation based on PaddlePaddle.
The original article refers to
Cao, Yue, et al. "GCnet: Non-local networks meet squeeze-excitation networks and beyond"
(https://arxiv.org/pdf/1904.11492.pdf).
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): Backbone network, currently support Resnet50/101.
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone.
gc_channels (int, optional): The input channels to Global Context Block. Default: 512.
ratio (float, optional): It indicates the ratio of attention channels and gc_channels. Default: 0.25.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even,
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices=(2, 3),
gc_channels=512,
ratio=0.25,
enable_auxiliary_loss=True,
align_corners=False,
pretrained=None):
super().__init__()
self.backbone = backbone
backbone_channels = [
backbone.feat_channels[i] for i in backbone_indices
]
self.head = GCNetHead(num_classes, backbone_indices, backbone_channels,
gc_channels, ratio, enable_auxiliary_loss)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feat_list = self.backbone(x)
logit_list = self.head(feat_list)
return [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners) for logit in logit_list
]
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class GCNetHead(nn.Layer):
"""
The GCNetHead implementation.
Args:
num_classes (int): The unique number of target classes.
backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone.
The first index will be taken as a deep-supervision feature in auxiliary layer;
the second one will be taken as input of GlobalContextBlock.
backbone_channels (tuple): The same length with "backbone_indices". It indicates the channels of corresponding index.
gc_channels (int): The input channels to Global Context Block.
ratio (float): It indicates the ratio of attention channels and gc_channels.
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True.
"""
def __init__(self,
num_classes,
backbone_indices,
backbone_channels,
gc_channels,
ratio,
enable_auxiliary_loss=True):
super().__init__()
in_channels = backbone_channels[1]
self.conv_bn_relu1 = layers.ConvBNReLU(
in_channels=in_channels,
out_channels=gc_channels,
kernel_size=3,
padding=1)
self.gc_block = GlobalContextBlock(
gc_channels=gc_channels, in_channels=gc_channels, ratio=ratio)
self.conv_bn_relu2 = layers.ConvBNReLU(
in_channels=gc_channels,
out_channels=gc_channels,
kernel_size=3,
padding=1)
self.conv_bn_relu3 = layers.ConvBNReLU(
in_channels=in_channels + gc_channels,
out_channels=gc_channels,
kernel_size=3,
padding=1)
self.dropout = nn.Dropout(p=0.1)
self.conv = nn.Conv2D(
in_channels=gc_channels, out_channels=num_classes, kernel_size=1)
if enable_auxiliary_loss:
self.auxlayer = layers.AuxLayer(
in_channels=backbone_channels[0],
inter_channels=backbone_channels[0] // 4,
out_channels=num_classes)
self.backbone_indices = backbone_indices
self.enable_auxiliary_loss = enable_auxiliary_loss
def forward(self, feat_list):
logit_list = []
x = feat_list[self.backbone_indices[1]]
output = self.conv_bn_relu1(x)
output = self.gc_block(output)
output = self.conv_bn_relu2(output)
output = paddle.concat([x, output], axis=1)
output = self.conv_bn_relu3(output)
output = self.dropout(output)
logit = self.conv(output)
logit_list.append(logit)
if self.enable_auxiliary_loss:
low_level_feat = feat_list[self.backbone_indices[0]]
auxiliary_logit = self.auxlayer(low_level_feat)
logit_list.append(auxiliary_logit)
return logit_list
class GlobalContextBlock(nn.Layer):
"""
Global Context Block implementation.
Args:
in_channels (int): The input channels of Global Context Block.
ratio (float): The channels of attention map.
"""
def __init__(self, gc_channels, in_channels, ratio):
super().__init__()
self.gc_channels = gc_channels
self.conv_mask = nn.Conv2D(
in_channels=in_channels, out_channels=1, kernel_size=1)
self.softmax = nn.Softmax(axis=2)
inter_channels = int(in_channels * ratio)
self.channel_add_conv = nn.Sequential(
nn.Conv2D(
in_channels=in_channels,
out_channels=inter_channels,
kernel_size=1),
nn.LayerNorm(normalized_shape=[inter_channels, 1, 1]),
nn.ReLU(),
nn.Conv2D(
in_channels=inter_channels,
out_channels=in_channels,
kernel_size=1))
def global_context_block(self, x):
x_shape = paddle.shape(x)
# [N, C, H * W]
input_x = paddle.reshape(x, shape=[0, self.gc_channels, -1])
# [N, 1, C, H * W]
input_x = paddle.unsqueeze(input_x, axis=1)
# [N, 1, H, W]
context_mask = self.conv_mask(x)
# [N, 1, H * W]
context_mask = paddle.reshape(context_mask, shape=[0, 1, -1])
context_mask = self.softmax(context_mask)
# [N, 1, H * W, 1]
context_mask = paddle.unsqueeze(context_mask, axis=-1)
# [N, 1, C, 1]
context = paddle.matmul(input_x, context_mask)
# [N, C, 1, 1]
context = paddle.reshape(context, shape=[0, self.gc_channels, 1, 1])
return context
def forward(self, x):
context = self.global_context_block(x)
channel_add_term = self.channel_add_conv(context)
out = x + channel_add_term
return out