Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle.nn as nn | |
class Activation(nn.Layer): | |
""" | |
The wrapper of activations. | |
Args: | |
act (str, optional): The activation name in lowercase. It must be one of ['elu', 'gelu', | |
'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', | |
'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', | |
'hsigmoid']. Default: None, means identical transformation. | |
Returns: | |
A callable object of Activation. | |
Raises: | |
KeyError: When parameter `act` is not in the optional range. | |
Examples: | |
from paddleseg.models.common.activation import Activation | |
relu = Activation("relu") | |
print(relu) | |
# <class 'paddle.nn.layer.activation.ReLU'> | |
sigmoid = Activation("sigmoid") | |
print(sigmoid) | |
# <class 'paddle.nn.layer.activation.Sigmoid'> | |
not_exit_one = Activation("not_exit_one") | |
# KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink', | |
# 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', | |
# 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])" | |
""" | |
def __init__(self, act=None): | |
super(Activation, self).__init__() | |
self._act = act | |
upper_act_names = nn.layer.activation.__dict__.keys() | |
lower_act_names = [act.lower() for act in upper_act_names] | |
act_dict = dict(zip(lower_act_names, upper_act_names)) | |
if act is not None: | |
if act in act_dict.keys(): | |
act_name = act_dict[act] | |
self.act_func = eval("nn.layer.activation.{}()".format( | |
act_name)) | |
else: | |
raise KeyError("{} does not exist in the current {}".format( | |
act, act_dict.keys())) | |
def forward(self, x): | |
if self._act is not None: | |
return self.act_func(x) | |
else: | |
return x | |