sidharthism's picture
Added model *.pdparams
1ab1a09
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.models import layers
def SyncBatchNorm(*args, **kwargs):
"""In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead"""
if paddle.get_device() == 'cpu' or os.environ.get('PADDLESEG_EXPORT_STAGE'):
return nn.BatchNorm2D(*args, **kwargs)
elif paddle.distributed.ParallelEnv().nranks == 1:
return nn.BatchNorm2D(*args, **kwargs)
else:
return nn.SyncBatchNorm(*args, **kwargs)
class ConvBNReLU(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
**kwargs):
super().__init__()
self._conv = nn.Conv2D(
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format)
self._relu = layers.Activation("relu")
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
x = self._relu(x)
return x
class ConvBNAct(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
act_type=None,
**kwargs):
super().__init__()
self._conv = nn.Conv2D(
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format)
self._act_type = act_type
if act_type is not None:
self._act = layers.Activation(act_type)
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
if self._act_type is not None:
x = self._act(x)
return x
class ConvBN(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
**kwargs):
super().__init__()
self._conv = nn.Conv2D(
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format)
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
return x
class ConvReLUPool(nn.Layer):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2D(
in_channels,
out_channels,
kernel_size=3,
stride=1,
padding=1,
dilation=1)
self._relu = layers.Activation("relu")
self._max_pool = nn.MaxPool2D(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv(x)
x = self._relu(x)
x = self._max_pool(x)
return x
class SeparableConvBNReLU(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
pointwise_bias=None,
**kwargs):
super().__init__()
self.depthwise_conv = ConvBN(
in_channels,
out_channels=in_channels,
kernel_size=kernel_size,
padding=padding,
groups=in_channels,
**kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
self.piontwise_conv = ConvBNReLU(
in_channels,
out_channels,
kernel_size=1,
groups=1,
data_format=data_format,
bias_attr=pointwise_bias)
def forward(self, x):
x = self.depthwise_conv(x)
x = self.piontwise_conv(x)
return x
class DepthwiseConvBN(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
**kwargs):
super().__init__()
self.depthwise_conv = ConvBN(
in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
padding=padding,
groups=in_channels,
**kwargs)
def forward(self, x):
x = self.depthwise_conv(x)
return x
class AuxLayer(nn.Layer):
"""
The auxiliary layer implementation for auxiliary loss.
Args:
in_channels (int): The number of input channels.
inter_channels (int): The intermediate channels.
out_channels (int): The number of output channels, and usually it is num_classes.
dropout_prob (float, optional): The drop rate. Default: 0.1.
"""
def __init__(self,
in_channels,
inter_channels,
out_channels,
dropout_prob=0.1,
**kwargs):
super().__init__()
self.conv_bn_relu = ConvBNReLU(
in_channels=in_channels,
out_channels=inter_channels,
kernel_size=3,
padding=1,
**kwargs)
self.dropout = nn.Dropout(p=dropout_prob)
self.conv = nn.Conv2D(
in_channels=inter_channels,
out_channels=out_channels,
kernel_size=1)
def forward(self, x):
x = self.conv_bn_relu(x)
x = self.dropout(x)
x = self.conv(x)
return x
class JPU(nn.Layer):
"""
Joint Pyramid Upsampling of FCN.
The original paper refers to
Wu, Huikai, et al. "Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation." arXiv preprint arXiv:1903.11816 (2019).
"""
def __init__(self, in_channels, width=512):
super().__init__()
self.conv5 = ConvBNReLU(
in_channels[-1], width, 3, padding=1, bias_attr=False)
self.conv4 = ConvBNReLU(
in_channels[-2], width, 3, padding=1, bias_attr=False)
self.conv3 = ConvBNReLU(
in_channels[-3], width, 3, padding=1, bias_attr=False)
self.dilation1 = SeparableConvBNReLU(
3 * width,
width,
3,
padding=1,
pointwise_bias=False,
dilation=1,
bias_attr=False,
stride=1, )
self.dilation2 = SeparableConvBNReLU(
3 * width,
width,
3,
padding=2,
pointwise_bias=False,
dilation=2,
bias_attr=False,
stride=1)
self.dilation3 = SeparableConvBNReLU(
3 * width,
width,
3,
padding=4,
pointwise_bias=False,
dilation=4,
bias_attr=False,
stride=1)
self.dilation4 = SeparableConvBNReLU(
3 * width,
width,
3,
padding=8,
pointwise_bias=False,
dilation=8,
bias_attr=False,
stride=1)
def forward(self, *inputs):
feats = [
self.conv5(inputs[-1]), self.conv4(inputs[-2]),
self.conv3(inputs[-3])
]
size = paddle.shape(feats[-1])[2:]
feats[-2] = F.interpolate(
feats[-2], size, mode='bilinear', align_corners=True)
feats[-3] = F.interpolate(
feats[-3], size, mode='bilinear', align_corners=True)
feat = paddle.concat(feats, axis=1)
feat = paddle.concat(
[
self.dilation1(feat), self.dilation2(feat),
self.dilation3(feat), self.dilation4(feat)
],
axis=1)
return inputs[0], inputs[1], inputs[2], feat
class ConvBNPReLU(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
**kwargs):
super().__init__()
self._conv = nn.Conv2D(
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format)
self._prelu = layers.Activation("prelu")
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
x = self._prelu(x)
return x
class ConvBNLeakyReLU(nn.Layer):
def __init__(self,
in_channels,
out_channels,
kernel_size,
padding='same',
**kwargs):
super().__init__()
self._conv = nn.Conv2D(
in_channels, out_channels, kernel_size, padding=padding, **kwargs)
if 'data_format' in kwargs:
data_format = kwargs['data_format']
else:
data_format = 'NCHW'
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format)
self._relu = layers.Activation("leakyrelu")
def forward(self, x):
x = self._conv(x)
x = self._batch_norm(x)
x = self._relu(x)
return x