Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.models import layers | |
def SyncBatchNorm(*args, **kwargs): | |
"""In cpu environment nn.SyncBatchNorm does not have kernel so use nn.BatchNorm2D instead""" | |
if paddle.get_device() == 'cpu' or os.environ.get('PADDLESEG_EXPORT_STAGE'): | |
return nn.BatchNorm2D(*args, **kwargs) | |
elif paddle.distributed.ParallelEnv().nranks == 1: | |
return nn.BatchNorm2D(*args, **kwargs) | |
else: | |
return nn.SyncBatchNorm(*args, **kwargs) | |
class ConvBNReLU(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
**kwargs): | |
super().__init__() | |
self._conv = nn.Conv2D( | |
in_channels, out_channels, kernel_size, padding=padding, **kwargs) | |
if 'data_format' in kwargs: | |
data_format = kwargs['data_format'] | |
else: | |
data_format = 'NCHW' | |
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) | |
self._relu = layers.Activation("relu") | |
def forward(self, x): | |
x = self._conv(x) | |
x = self._batch_norm(x) | |
x = self._relu(x) | |
return x | |
class ConvBNAct(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
act_type=None, | |
**kwargs): | |
super().__init__() | |
self._conv = nn.Conv2D( | |
in_channels, out_channels, kernel_size, padding=padding, **kwargs) | |
if 'data_format' in kwargs: | |
data_format = kwargs['data_format'] | |
else: | |
data_format = 'NCHW' | |
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) | |
self._act_type = act_type | |
if act_type is not None: | |
self._act = layers.Activation(act_type) | |
def forward(self, x): | |
x = self._conv(x) | |
x = self._batch_norm(x) | |
if self._act_type is not None: | |
x = self._act(x) | |
return x | |
class ConvBN(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
**kwargs): | |
super().__init__() | |
self._conv = nn.Conv2D( | |
in_channels, out_channels, kernel_size, padding=padding, **kwargs) | |
if 'data_format' in kwargs: | |
data_format = kwargs['data_format'] | |
else: | |
data_format = 'NCHW' | |
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) | |
def forward(self, x): | |
x = self._conv(x) | |
x = self._batch_norm(x) | |
return x | |
class ConvReLUPool(nn.Layer): | |
def __init__(self, in_channels, out_channels): | |
super().__init__() | |
self.conv = nn.Conv2D( | |
in_channels, | |
out_channels, | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
dilation=1) | |
self._relu = layers.Activation("relu") | |
self._max_pool = nn.MaxPool2D(kernel_size=2, stride=2) | |
def forward(self, x): | |
x = self.conv(x) | |
x = self._relu(x) | |
x = self._max_pool(x) | |
return x | |
class SeparableConvBNReLU(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
pointwise_bias=None, | |
**kwargs): | |
super().__init__() | |
self.depthwise_conv = ConvBN( | |
in_channels, | |
out_channels=in_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
groups=in_channels, | |
**kwargs) | |
if 'data_format' in kwargs: | |
data_format = kwargs['data_format'] | |
else: | |
data_format = 'NCHW' | |
self.piontwise_conv = ConvBNReLU( | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
groups=1, | |
data_format=data_format, | |
bias_attr=pointwise_bias) | |
def forward(self, x): | |
x = self.depthwise_conv(x) | |
x = self.piontwise_conv(x) | |
return x | |
class DepthwiseConvBN(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
**kwargs): | |
super().__init__() | |
self.depthwise_conv = ConvBN( | |
in_channels, | |
out_channels=out_channels, | |
kernel_size=kernel_size, | |
padding=padding, | |
groups=in_channels, | |
**kwargs) | |
def forward(self, x): | |
x = self.depthwise_conv(x) | |
return x | |
class AuxLayer(nn.Layer): | |
""" | |
The auxiliary layer implementation for auxiliary loss. | |
Args: | |
in_channels (int): The number of input channels. | |
inter_channels (int): The intermediate channels. | |
out_channels (int): The number of output channels, and usually it is num_classes. | |
dropout_prob (float, optional): The drop rate. Default: 0.1. | |
""" | |
def __init__(self, | |
in_channels, | |
inter_channels, | |
out_channels, | |
dropout_prob=0.1, | |
**kwargs): | |
super().__init__() | |
self.conv_bn_relu = ConvBNReLU( | |
in_channels=in_channels, | |
out_channels=inter_channels, | |
kernel_size=3, | |
padding=1, | |
**kwargs) | |
self.dropout = nn.Dropout(p=dropout_prob) | |
self.conv = nn.Conv2D( | |
in_channels=inter_channels, | |
out_channels=out_channels, | |
kernel_size=1) | |
def forward(self, x): | |
x = self.conv_bn_relu(x) | |
x = self.dropout(x) | |
x = self.conv(x) | |
return x | |
class JPU(nn.Layer): | |
""" | |
Joint Pyramid Upsampling of FCN. | |
The original paper refers to | |
Wu, Huikai, et al. "Fastfcn: Rethinking dilated convolution in the backbone for semantic segmentation." arXiv preprint arXiv:1903.11816 (2019). | |
""" | |
def __init__(self, in_channels, width=512): | |
super().__init__() | |
self.conv5 = ConvBNReLU( | |
in_channels[-1], width, 3, padding=1, bias_attr=False) | |
self.conv4 = ConvBNReLU( | |
in_channels[-2], width, 3, padding=1, bias_attr=False) | |
self.conv3 = ConvBNReLU( | |
in_channels[-3], width, 3, padding=1, bias_attr=False) | |
self.dilation1 = SeparableConvBNReLU( | |
3 * width, | |
width, | |
3, | |
padding=1, | |
pointwise_bias=False, | |
dilation=1, | |
bias_attr=False, | |
stride=1, ) | |
self.dilation2 = SeparableConvBNReLU( | |
3 * width, | |
width, | |
3, | |
padding=2, | |
pointwise_bias=False, | |
dilation=2, | |
bias_attr=False, | |
stride=1) | |
self.dilation3 = SeparableConvBNReLU( | |
3 * width, | |
width, | |
3, | |
padding=4, | |
pointwise_bias=False, | |
dilation=4, | |
bias_attr=False, | |
stride=1) | |
self.dilation4 = SeparableConvBNReLU( | |
3 * width, | |
width, | |
3, | |
padding=8, | |
pointwise_bias=False, | |
dilation=8, | |
bias_attr=False, | |
stride=1) | |
def forward(self, *inputs): | |
feats = [ | |
self.conv5(inputs[-1]), self.conv4(inputs[-2]), | |
self.conv3(inputs[-3]) | |
] | |
size = paddle.shape(feats[-1])[2:] | |
feats[-2] = F.interpolate( | |
feats[-2], size, mode='bilinear', align_corners=True) | |
feats[-3] = F.interpolate( | |
feats[-3], size, mode='bilinear', align_corners=True) | |
feat = paddle.concat(feats, axis=1) | |
feat = paddle.concat( | |
[ | |
self.dilation1(feat), self.dilation2(feat), | |
self.dilation3(feat), self.dilation4(feat) | |
], | |
axis=1) | |
return inputs[0], inputs[1], inputs[2], feat | |
class ConvBNPReLU(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
**kwargs): | |
super().__init__() | |
self._conv = nn.Conv2D( | |
in_channels, out_channels, kernel_size, padding=padding, **kwargs) | |
if 'data_format' in kwargs: | |
data_format = kwargs['data_format'] | |
else: | |
data_format = 'NCHW' | |
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) | |
self._prelu = layers.Activation("prelu") | |
def forward(self, x): | |
x = self._conv(x) | |
x = self._batch_norm(x) | |
x = self._prelu(x) | |
return x | |
class ConvBNLeakyReLU(nn.Layer): | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
padding='same', | |
**kwargs): | |
super().__init__() | |
self._conv = nn.Conv2D( | |
in_channels, out_channels, kernel_size, padding=padding, **kwargs) | |
if 'data_format' in kwargs: | |
data_format = kwargs['data_format'] | |
else: | |
data_format = 'NCHW' | |
self._batch_norm = SyncBatchNorm(out_channels, data_format=data_format) | |
self._relu = layers.Activation("leakyrelu") | |
def forward(self, x): | |
x = self._conv(x) | |
x = self._batch_norm(x) | |
x = self._relu(x) | |
return x | |