Spaces:
Configuration error
Configuration error
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
def avg_reduce_hw(x): | |
# Reduce hw by avg | |
# Return cat([avg_pool_0, avg_pool_1, ...]) | |
if not isinstance(x, (list, tuple)): | |
return F.adaptive_avg_pool2d(x, 1) | |
elif len(x) == 1: | |
return F.adaptive_avg_pool2d(x[0], 1) | |
else: | |
res = [] | |
for xi in x: | |
res.append(F.adaptive_avg_pool2d(xi, 1)) | |
return paddle.concat(res, axis=1) | |
def avg_max_reduce_hw_helper(x, is_training, use_concat=True): | |
assert not isinstance(x, (list, tuple)) | |
avg_pool = F.adaptive_avg_pool2d(x, 1) | |
# TODO(pjc): when axis=[2, 3], the paddle.max api has bug for training. | |
if is_training: | |
max_pool = F.adaptive_max_pool2d(x, 1) | |
else: | |
max_pool = paddle.max(x, axis=[2, 3], keepdim=True) | |
if use_concat: | |
res = paddle.concat([avg_pool, max_pool], axis=1) | |
else: | |
res = [avg_pool, max_pool] | |
return res | |
def avg_max_reduce_hw(x, is_training): | |
# Reduce hw by avg and max | |
# Return cat([avg_pool_0, avg_pool_1, ..., max_pool_0, max_pool_1, ...]) | |
if not isinstance(x, (list, tuple)): | |
return avg_max_reduce_hw_helper(x, is_training) | |
elif len(x) == 1: | |
return avg_max_reduce_hw_helper(x[0], is_training) | |
else: | |
res_avg = [] | |
res_max = [] | |
for xi in x: | |
avg, max = avg_max_reduce_hw_helper(xi, is_training, False) | |
res_avg.append(avg) | |
res_max.append(max) | |
res = res_avg + res_max | |
return paddle.concat(res, axis=1) | |
def avg_reduce_channel(x): | |
# Reduce channel by avg | |
# Return cat([avg_ch_0, avg_ch_1, ...]) | |
if not isinstance(x, (list, tuple)): | |
return paddle.mean(x, axis=1, keepdim=True) | |
elif len(x) == 1: | |
return paddle.mean(x[0], axis=1, keepdim=True) | |
else: | |
res = [] | |
for xi in x: | |
res.append(paddle.mean(xi, axis=1, keepdim=True)) | |
return paddle.concat(res, axis=1) | |
def max_reduce_channel(x): | |
# Reduce channel by max | |
# Return cat([max_ch_0, max_ch_1, ...]) | |
if not isinstance(x, (list, tuple)): | |
return paddle.max(x, axis=1, keepdim=True) | |
elif len(x) == 1: | |
return paddle.max(x[0], axis=1, keepdim=True) | |
else: | |
res = [] | |
for xi in x: | |
res.append(paddle.max(xi, axis=1, keepdim=True)) | |
return paddle.concat(res, axis=1) | |
def avg_max_reduce_channel_helper(x, use_concat=True): | |
# Reduce hw by avg and max, only support single input | |
assert not isinstance(x, (list, tuple)) | |
mean_value = paddle.mean(x, axis=1, keepdim=True) | |
max_value = paddle.max(x, axis=1, keepdim=True) | |
if use_concat: | |
res = paddle.concat([mean_value, max_value], axis=1) | |
else: | |
res = [mean_value, max_value] | |
return res | |
def avg_max_reduce_channel(x): | |
# Reduce hw by avg and max | |
# Return cat([avg_ch_0, max_ch_0, avg_ch_1, max_ch_1, ...]) | |
if not isinstance(x, (list, tuple)): | |
return avg_max_reduce_channel_helper(x) | |
elif len(x) == 1: | |
return avg_max_reduce_channel_helper(x[0]) | |
else: | |
res = [] | |
for xi in x: | |
res.extend(avg_max_reduce_channel_helper(xi, False)) | |
return paddle.concat(res, axis=1) | |
def cat_avg_max_reduce_channel(x): | |
# Reduce hw by cat+avg+max | |
assert isinstance(x, (list, tuple)) and len(x) > 1 | |
x = paddle.concat(x, axis=1) | |
mean_value = paddle.mean(x, axis=1, keepdim=True) | |
max_value = paddle.max(x, axis=1, keepdim=True) | |
res = paddle.concat([mean_value, max_value], axis=1) | |
return res |