Spaces:
Configuration error
Configuration error
import numpy as np | |
from numba import njit, prange | |
# The foreground estimation refer to pymatting [https://github.com/pymatting/pymatting/blob/master/pymatting/foreground/estimate_foreground_ml.py] | |
def _resize_nearest_multichannel(dst, src): | |
""" | |
Internal method. | |
Resize image src to dst using nearest neighbors filtering. | |
Images must have multiple color channels, i.e. :code:`len(shape) == 3`. | |
Parameters | |
---------- | |
dst: numpy.ndarray of type np.float32 | |
output image | |
src: numpy.ndarray of type np.float32 | |
input image | |
""" | |
h_src, w_src, depth = src.shape | |
h_dst, w_dst, depth = dst.shape | |
for y_dst in prange(h_dst): | |
for x_dst in range(w_dst): | |
x_src = max(0, min(w_src - 1, x_dst * w_src // w_dst)) | |
y_src = max(0, min(h_src - 1, y_dst * h_src // h_dst)) | |
for c in range(depth): | |
dst[y_dst, x_dst, c] = src[y_src, x_src, c] | |
def _resize_nearest(dst, src): | |
""" | |
Internal method. | |
Resize image src to dst using nearest neighbors filtering. | |
Images must be grayscale, i.e. :code:`len(shape) == 3`. | |
Parameters | |
---------- | |
dst: numpy.ndarray of type np.float32 | |
output image | |
src: numpy.ndarray of type np.float32 | |
input image | |
""" | |
h_src, w_src = src.shape | |
h_dst, w_dst = dst.shape | |
for y_dst in prange(h_dst): | |
for x_dst in range(w_dst): | |
x_src = max(0, min(w_src - 1, x_dst * w_src // w_dst)) | |
y_src = max(0, min(h_src - 1, y_dst * h_src // h_dst)) | |
dst[y_dst, x_dst] = src[y_src, x_src] | |
# TODO | |
# There should be an option to switch @njit(parallel=True) on or off. | |
# parallel=True would be faster, but might cause race conditions. | |
# User should have the option to turn it on or off. | |
def _estimate_fb_ml( | |
input_image, | |
input_alpha, | |
regularization, | |
n_small_iterations, | |
n_big_iterations, | |
small_size, | |
gradient_weight, ): | |
h0, w0, depth = input_image.shape | |
dtype = np.float32 | |
w_prev = 1 | |
h_prev = 1 | |
F_prev = np.empty((h_prev, w_prev, depth), dtype=dtype) | |
B_prev = np.empty((h_prev, w_prev, depth), dtype=dtype) | |
n_levels = int(np.ceil(np.log2(max(w0, h0)))) | |
for i_level in range(n_levels + 1): | |
w = round(w0**(i_level / n_levels)) | |
h = round(h0**(i_level / n_levels)) | |
image = np.empty((h, w, depth), dtype=dtype) | |
alpha = np.empty((h, w), dtype=dtype) | |
_resize_nearest_multichannel(image, input_image) | |
_resize_nearest(alpha, input_alpha) | |
F = np.empty((h, w, depth), dtype=dtype) | |
B = np.empty((h, w, depth), dtype=dtype) | |
_resize_nearest_multichannel(F, F_prev) | |
_resize_nearest_multichannel(B, B_prev) | |
if w <= small_size and h <= small_size: | |
n_iter = n_small_iterations | |
else: | |
n_iter = n_big_iterations | |
b = np.zeros((2, depth), dtype=dtype) | |
dx = [-1, 1, 0, 0] | |
dy = [0, 0, -1, 1] | |
for i_iter in range(n_iter): | |
for y in prange(h): | |
for x in range(w): | |
a0 = alpha[y, x] | |
a1 = 1.0 - a0 | |
a00 = a0 * a0 | |
a01 = a0 * a1 | |
# a10 = a01 can be omitted due to symmetry of matrix | |
a11 = a1 * a1 | |
for c in range(depth): | |
b[0, c] = a0 * image[y, x, c] | |
b[1, c] = a1 * image[y, x, c] | |
for d in range(4): | |
x2 = max(0, min(w - 1, x + dx[d])) | |
y2 = max(0, min(h - 1, y + dy[d])) | |
gradient = abs(a0 - alpha[y2, x2]) | |
da = regularization + gradient_weight * gradient | |
a00 += da | |
a11 += da | |
for c in range(depth): | |
b[0, c] += da * F[y2, x2, c] | |
b[1, c] += da * B[y2, x2, c] | |
determinant = a00 * a11 - a01 * a01 | |
inv_det = 1.0 / determinant | |
b00 = inv_det * a11 | |
b01 = inv_det * -a01 | |
b11 = inv_det * a00 | |
for c in range(depth): | |
F_c = b00 * b[0, c] + b01 * b[1, c] | |
B_c = b01 * b[0, c] + b11 * b[1, c] | |
F_c = max(0.0, min(1.0, F_c)) | |
B_c = max(0.0, min(1.0, B_c)) | |
F[y, x, c] = F_c | |
B[y, x, c] = B_c | |
F_prev = F | |
B_prev = B | |
w_prev = w | |
h_prev = h | |
return F, B | |
def estimate_foreground_ml( | |
image, | |
alpha, | |
regularization=1e-5, | |
n_small_iterations=10, | |
n_big_iterations=2, | |
small_size=32, | |
return_background=False, | |
gradient_weight=1.0, ): | |
"""Estimates the foreground of an image given its alpha matte. | |
See :cite:`germer2020multilevel` for reference. | |
Parameters | |
---------- | |
image: numpy.ndarray | |
Input image with shape :math:`h \\times w \\times d` | |
alpha: numpy.ndarray | |
Input alpha matte shape :math:`h \\times w` | |
regularization: float | |
Regularization strength :math:`\\epsilon`, defaults to :math:`10^{-5}`. | |
Higher regularization results in smoother colors. | |
n_small_iterations: int | |
Number of iterations performed on small scale, defaults to :math:`10` | |
n_big_iterations: int | |
Number of iterations performed on large scale, defaults to :math:`2` | |
small_size: int | |
Threshold that determines at which size `n_small_iterations` should be used | |
return_background: bool | |
Whether to return the estimated background in addition to the foreground | |
gradient_weight: float | |
Larger values enforce smoother foregrounds, defaults to :math:`1` | |
Returns | |
------- | |
F: numpy.ndarray | |
Extracted foreground | |
B: numpy.ndarray | |
Extracted background | |
Example | |
------- | |
>>> from pymatting import * | |
>>> image = load_image("data/lemur/lemur.png", "RGB") | |
>>> alpha = load_image("data/lemur/lemur_alpha.png", "GRAY") | |
>>> F = estimate_foreground_ml(image, alpha, return_background=False) | |
>>> F, B = estimate_foreground_ml(image, alpha, return_background=True) | |
See Also | |
---- | |
stack_images: This function can be used to place the foreground on a new background. | |
""" | |
foreground, background = _estimate_fb_ml( | |
image.astype(np.float32), | |
alpha.astype(np.float32), | |
regularization, | |
n_small_iterations, | |
n_big_iterations, | |
small_size, | |
gradient_weight, ) | |
if return_background: | |
return foreground, background | |
return foreground | |