# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from paddleseg.models import layers class NonLocal2D(nn.Layer): """Basic Non-local module. This model is the implementation of "Non-local Neural Networks" (https://arxiv.org/abs/1711.07971) Args: in_channels (int): Channels of the input feature map. reduction (int): Channel reduction ratio. Default: 2. use_scale (bool): Whether to scale pairwise_weight by `1/sqrt(inter_channels)` when the mode is `embedded_gaussian`. Default: True. sub_sample (bool): Whether to utilize max pooling after pairwise function. Default: False. mode (str): Options are `gaussian`, `concatenation`, `embedded_gaussian` and `dot_product`. Default: embedded_gaussian. """ def __init__(self, in_channels, reduction=2, use_scale=True, sub_sample=False, mode='embedded_gaussian'): super(NonLocal2D, self).__init__() self.in_channels = in_channels self.reduction = reduction self.use_scale = use_scale self.sub_sample = sub_sample self.mode = mode if mode not in [ 'gaussian', 'embedded_gaussian', 'dot_product', 'concatenation' ]: raise ValueError( "Mode should be in 'gaussian', 'concatenation','embedded_gaussian' or 'dot_product'." ) self.inter_channels = max(in_channels // reduction, 1) self.g = nn.Conv2D( in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1) self.conv_out = layers.ConvBNReLU( in_channels=self.inter_channels, out_channels=self.in_channels, kernel_size=1, bias_attr=False) if self.mode != "gaussian": self.theta = nn.Conv2D( in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1) self.phi = nn.Conv2D( in_channels=self.in_channels, out_channels=self.inter_channels, kernel_size=1) if self.mode == "concatenation": self.concat_project = layers.ConvBNReLU( in_channels=self.inter_channels * 2, out_channels=1, kernel_size=1, bias_attr=False) if self.sub_sample: max_pool_layer = nn.MaxPool2D(kernel_size=(2, 2)) self.g = nn.Sequential(self.g, max_pool_layer) if self.mode != 'gaussian': self.phi = nn.Sequential(self.phi, max_pool_layer) else: self.phi = max_pool_layer def gaussian(self, theta_x, phi_x): pairwise_weight = paddle.matmul(theta_x, phi_x) pairwise_weight = F.softmax(pairwise_weight, axis=-1) return pairwise_weight def embedded_gaussian(self, theta_x, phi_x): pairwise_weight = paddle.matmul(theta_x, phi_x) if self.use_scale: pairwise_weight /= theta_x.shape[-1]**0.5 pairwise_weight = F.softmax(pairwise_weight, -1) return pairwise_weight def dot_product(self, theta_x, phi_x): pairwise_weight = paddle.matmul(theta_x, phi_x) pairwise_weight /= pairwise_weight.shape[-1] return pairwise_weight def concatenation(self, theta_x, phi_x): h = theta_x.shape[2] w = phi_x.shape[3] theta_x = paddle.tile(theta_x, [1, 1, 1, w]) phi_x = paddle.tile(phi_x, [1, 1, h, 1]) concat_feature = paddle.concat([theta_x, phi_x], axis=1) pairwise_weight = self.concat_project(concat_feature) n, _, h, w = pairwise_weight.shape pairwise_weight = paddle.reshape(pairwise_weight, [n, h, w]) pairwise_weight /= pairwise_weight.shape[-1] return pairwise_weight def forward(self, x): n, c, h, w = x.shape g_x = paddle.reshape(self.g(x), [n, self.inter_channels, -1]) g_x = paddle.transpose(g_x, [0, 2, 1]) if self.mode == 'gaussian': theta_x = paddle.reshape(x, [n, self.inter_channels, -1]) theta_x = paddle.transpose(theta_x, [0, 2, 1]) if self.sub_sample: phi_x = paddle.reshape( self.phi(x), [n, self.inter_channels, -1]) else: phi_x = paddle.reshape(x, [n, self.in_channels, -1]) elif self.mode == 'concatenation': theta_x = paddle.reshape( self.theta(x), [n, self.inter_channels, -1, 1]) phi_x = paddle.reshape(self.phi(x), [n, self.inter_channels, 1, -1]) else: theta_x = paddle.reshape( self.theta(x), [n, self.inter_channels, -1]) theta_x = paddle.transpose(theta_x, [0, 2, 1]) phi_x = paddle.reshape(self.phi(x), [n, self.inter_channels, -1]) pairwise_func = getattr(self, self.mode) pairwise_weight = pairwise_func(theta_x, phi_x) y = paddle.matmul(pairwise_weight, g_x) y = paddle.transpose(y, [0, 2, 1]) y = paddle.reshape(y, [n, self.inter_channels, h, w]) output = x + self.conv_out(y) return output