# you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import nn import paddle.nn.functional as F from paddleseg.cvlibs import manager @manager.LOSSES.add_component class DiceLoss(nn.Layer): """ The implements of the dice loss. Args: weight (list[float], optional): The weight for each class. Default: None. ignore_index (int64): ignore_index (int64, optional): Specifies a target value that is ignored and does not contribute to the input gradient. Default ``255``. smooth (float32): Laplace smoothing to smooth dice loss and accelerate convergence. Default: 1.0 """ def __init__(self, weight=None, ignore_index=255, smooth=1.0): super().__init__() self.weight = weight self.ignore_index = ignore_index self.smooth = smooth self.eps = 1e-8 def forward(self, logits, labels): num_class = logits.shape[1] if self.weight is not None: assert num_class == len(self.weight), \ "The lenght of weight should be euqal to the num class" mask = labels != self.ignore_index mask = paddle.cast(paddle.unsqueeze(mask, 1), 'float32') labels[labels == self.ignore_index] = 0 labels_one_hot = F.one_hot(labels, num_class) labels_one_hot = paddle.transpose(labels_one_hot, [0, 3, 1, 2]) logits = F.softmax(logits, axis=1) dice_loss = 0.0 for i in range(num_class): dice_loss_i = dice_loss_helper(logits[:, i], labels_one_hot[:, i], mask, self.smooth, self.eps) if self.weight is not None: dice_loss_i *= self.weight[i] dice_loss += dice_loss_i dice_loss = dice_loss / num_class return dice_loss def dice_loss_helper(logit, label, mask, smooth, eps): assert logit.shape == label.shape, \ "The shape of logit and label should be the same" logit = paddle.reshape(logit, [0, -1]) label = paddle.reshape(label, [0, -1]) mask = paddle.reshape(mask, [0, -1]) logit *= mask label *= mask intersection = paddle.sum(logit * label, axis=1) cardinality = paddle.sum(logit + label, axis=1) dice_loss = 1 - (2 * intersection + smooth) / (cardinality + smooth + eps) dice_loss = dice_loss.mean() return dice_loss