# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from paddle import nn import paddle.nn.functional as F from paddleseg.cvlibs import manager from paddleseg.models import losses @manager.LOSSES.add_component class EdgeAttentionLoss(nn.Layer): """ Implements the cross entropy loss function. It only compute the edge part. Args: edge_threshold (float): The pixels greater edge_threshold as edges. ignore_index (int64): Specifies a target value that is ignored and does not contribute to the input gradient. Default ``255``. """ def __init__(self, edge_threshold=0.8, ignore_index=255): super().__init__() self.edge_threshold = edge_threshold self.ignore_index = ignore_index self.EPS = 1e-10 self.mean_mask = 1 def forward(self, logits, label): """ Forward computation. Args: logits (tuple|list): (seg_logit, edge_logit) Tensor, the data type is float32, float64. Shape is (N, C), where C is number of classes, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1. C =1 of edge_logit . label (Tensor): Label tensor, the data type is int64. Shape is (N, C), where each value is 0 <= label[i] <= C-1, and if shape is more than 2D, this is (N, C, D1, D2,..., Dk), k >= 1. """ seg_logit, edge_logit = logits[0], logits[1] if len(label.shape) != len(seg_logit.shape): label = paddle.unsqueeze(label, 1) if edge_logit.shape != label.shape: raise ValueError( 'The shape of edge_logit should equal to the label, but they are {} != {}' .format(edge_logit.shape, label.shape)) filler = paddle.ones_like(label) * self.ignore_index label = paddle.where(edge_logit > self.edge_threshold, label, filler) seg_logit = paddle.transpose(seg_logit, [0, 2, 3, 1]) label = paddle.transpose(label, [0, 2, 3, 1]) loss = F.softmax_with_cross_entropy( seg_logit, label, ignore_index=self.ignore_index, axis=-1) mask = label != self.ignore_index mask = paddle.cast(mask, 'float32') loss = loss * mask avg_loss = paddle.mean(loss) / (paddle.mean(mask) + self.EPS) if paddle.mean(mask) < self.mean_mask: self.mean_mask = paddle.mean(mask) label.stop_gradient = True mask.stop_gradient = True return avg_loss