# copyright (c) 2021 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from functools import partial import paddle import paddle.nn as nn import paddle.nn.functional as F import paddle.nn.initializer as paddle_init from paddleseg.cvlibs import manager from paddleseg.utils import utils from paddleseg.models.backbones.transformer_utils import * class Mlp(nn.Layer): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.dwconv = DWConv(hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) if m.bias is not None: zeros_(m.bias) def forward(self, x, H, W): x = self.fc1(x) x = self.dwconv(x, H, W) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class Attention(nn.Layer): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1): super().__init__() assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}." self.dim = dim self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim**-0.5 self.dim = dim self.q = nn.Linear(dim, dim, bias_attr=qkv_bias) self.kv = nn.Linear(dim, dim * 2, bias_attr=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) self.sr_ratio = sr_ratio if sr_ratio > 1: self.sr = nn.Conv2D(dim, dim, kernel_size=sr_ratio, stride=sr_ratio) self.norm = nn.LayerNorm(dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) if m.bias is not None: zeros_(m.bias) def forward(self, x, H, W): x_shape = paddle.shape(x) B, N = x_shape[0], x_shape[1] C = self.dim q = self.q(x).reshape([B, N, self.num_heads, C // self.num_heads]).transpose([0, 2, 1, 3]) if self.sr_ratio > 1: x_ = x.transpose([0, 2, 1]).reshape([B, C, H, W]) x_ = self.sr(x_).reshape([B, C, -1]).transpose([0, 2, 1]) x_ = self.norm(x_) kv = self.kv(x_).reshape( [B, -1, 2, self.num_heads, C // self.num_heads]).transpose([2, 0, 3, 1, 4]) else: kv = self.kv(x).reshape( [B, -1, 2, self.num_heads, C // self.num_heads]).transpose([2, 0, 3, 1, 4]) k, v = kv[0], kv[1] attn = (q @k.transpose([0, 1, 3, 2])) * self.scale attn = F.softmax(attn, axis=-1) attn = self.attn_drop(attn) x = (attn @v).transpose([0, 2, 1, 3]).reshape([B, N, C]) x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Layer): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1): super().__init__() self.norm1 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) if m.bias is not None: zeros_(m.bias) def forward(self, x, H, W): x = x + self.drop_path(self.attn(self.norm1(x), H, W)) x = x + self.drop_path(self.mlp(self.norm2(x), H, W)) return x class OverlapPatchEmbed(nn.Layer): """ Image to Patch Embedding """ def __init__(self, img_size=224, patch_size=7, stride=4, in_chans=3, embed_dim=768): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) self.img_size = img_size self.patch_size = patch_size self.H, self.W = img_size[0] // patch_size[0], img_size[ 1] // patch_size[1] self.num_patches = self.H * self.W self.proj = nn.Conv2D( in_chans, embed_dim, kernel_size=patch_size, stride=stride, padding=(patch_size[0] // 2, patch_size[1] // 2)) self.norm = nn.LayerNorm(embed_dim) self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) if m.bias is not None: zeros_(m.bias) def forward(self, x): x = self.proj(x) x_shape = paddle.shape(x) H, W = x_shape[2], x_shape[3] x = x.flatten(2).transpose([0, 2, 1]) x = self.norm(x) return x, H, W class MixVisionTransformer(nn.Layer): def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dims=[64, 128, 256, 512], num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm, depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], pretrained=None): super().__init__() self.num_classes = num_classes self.depths = depths self.feat_channels = embed_dims[:] # patch_embed self.patch_embed1 = OverlapPatchEmbed( img_size=img_size, patch_size=7, stride=4, in_chans=in_chans, embed_dim=embed_dims[0]) self.patch_embed2 = OverlapPatchEmbed( img_size=img_size // 4, patch_size=3, stride=2, in_chans=embed_dims[0], embed_dim=embed_dims[1]) self.patch_embed3 = OverlapPatchEmbed( img_size=img_size // 8, patch_size=3, stride=2, in_chans=embed_dims[1], embed_dim=embed_dims[2]) self.patch_embed4 = OverlapPatchEmbed( img_size=img_size // 16, patch_size=3, stride=2, in_chans=embed_dims[2], embed_dim=embed_dims[3]) # transformer encoder dpr = [ x.numpy() for x in paddle.linspace(0, drop_path_rate, sum(depths)) ] # stochastic depth decay rule cur = 0 self.block1 = nn.LayerList([ Block( dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[0]) for i in range(depths[0]) ]) self.norm1 = norm_layer(embed_dims[0]) cur += depths[0] self.block2 = nn.LayerList([ Block( dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[1]) for i in range(depths[1]) ]) self.norm2 = norm_layer(embed_dims[1]) cur += depths[1] self.block3 = nn.LayerList([ Block( dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[2]) for i in range(depths[2]) ]) self.norm3 = norm_layer(embed_dims[2]) cur += depths[2] self.block4 = nn.LayerList([ Block( dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, sr_ratio=sr_ratios[3]) for i in range(depths[3]) ]) self.norm4 = norm_layer(embed_dims[3]) self.pretrained = pretrained self.init_weight() def init_weight(self): if self.pretrained is not None: utils.load_pretrained_model(self, self.pretrained) else: self.apply(self._init_weights) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight) if isinstance(m, nn.Linear) and m.bias is not None: zeros_(m.bias) elif isinstance(m, nn.LayerNorm): zeros_(m.bias) ones_(m.weight) elif isinstance(m, nn.Conv2D): fan_out = m._kernel_size[0] * m._kernel_size[1] * m._out_channels fan_out //= m._groups paddle_init.Normal(0, math.sqrt(2.0 / fan_out))(m.weight) if m.bias is not None: zeros_(m.bias) def reset_drop_path(self, drop_path_rate): dpr = [ x.item() for x in paddle.linspace(0, drop_path_rate, sum(self.depths)) ] cur = 0 for i in range(self.depths[0]): self.block1[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[0] for i in range(self.depths[1]): self.block2[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[1] for i in range(self.depths[2]): self.block3[i].drop_path.drop_prob = dpr[cur + i] cur += self.depths[2] for i in range(self.depths[3]): self.block4[i].drop_path.drop_prob = dpr[cur + i] def freeze_patch_emb(self): self.patch_embed1.requires_grad = False def get_classifier(self): return self.head def reset_classifier(self, num_classes, global_pool=''): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): B = paddle.shape(x)[0] outs = [] # stage 1 x, H, W = self.patch_embed1(x) for i, blk in enumerate(self.block1): x = blk(x, H, W) x = self.norm1(x) x = x.reshape([B, H, W, self.feat_channels[0]]).transpose([0, 3, 1, 2]) outs.append(x) # stage 2 x, H, W = self.patch_embed2(x) for i, blk in enumerate(self.block2): x = blk(x, H, W) x = self.norm2(x) x = x.reshape([B, H, W, self.feat_channels[1]]).transpose([0, 3, 1, 2]) outs.append(x) # stage 3 x, H, W = self.patch_embed3(x) for i, blk in enumerate(self.block3): x = blk(x, H, W) x = self.norm3(x) x = x.reshape([B, H, W, self.feat_channels[2]]).transpose([0, 3, 1, 2]) outs.append(x) # stage 4 x, H, W = self.patch_embed4(x) for i, blk in enumerate(self.block4): x = blk(x, H, W) x = self.norm4(x) x = x.reshape([B, H, W, self.feat_channels[3]]).transpose([0, 3, 1, 2]) outs.append(x) return outs def forward(self, x): x = self.forward_features(x) # x = self.head(x) return x class DWConv(nn.Layer): def __init__(self, dim=768): super(DWConv, self).__init__() self.dim = dim self.dwconv = nn.Conv2D(dim, dim, 3, 1, 1, bias_attr=True, groups=dim) def forward(self, x, H, W): x_shape = paddle.shape(x) B, N = x_shape[0], x_shape[1] x = x.transpose([0, 2, 1]).reshape([B, self.dim, H, W]) x = self.dwconv(x) x = x.flatten(2).transpose([0, 2, 1]) return x @manager.BACKBONES.add_component def MixVisionTransformer_B0(**kwargs): return MixVisionTransformer( patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, **kwargs) @manager.BACKBONES.add_component def MixVisionTransformer_B1(**kwargs): return MixVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, **kwargs) @manager.BACKBONES.add_component def MixVisionTransformer_B2(**kwargs): return MixVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, **kwargs) @manager.BACKBONES.add_component def MixVisionTransformer_B3(**kwargs): return MixVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, **kwargs) @manager.BACKBONES.add_component def MixVisionTransformer_B4(**kwargs): return MixVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, **kwargs) @manager.BACKBONES.add_component def MixVisionTransformer_B5(**kwargs): return MixVisionTransformer( patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=True, norm_layer=partial( nn.LayerNorm, epsilon=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1], drop_rate=0.0, drop_path_rate=0.1, **kwargs)