# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.nn as nn class Activation(nn.Layer): """ The wrapper of activations. Args: act (str, optional): The activation name in lowercase. It must be one of ['elu', 'gelu', 'hardshrink', 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid']. Default: None, means identical transformation. Returns: A callable object of Activation. Raises: KeyError: When parameter `act` is not in the optional range. Examples: from paddleseg.models.common.activation import Activation relu = Activation("relu") print(relu) # sigmoid = Activation("sigmoid") print(sigmoid) # not_exit_one = Activation("not_exit_one") # KeyError: "not_exit_one does not exist in the current dict_keys(['elu', 'gelu', 'hardshrink', # 'tanh', 'hardtanh', 'prelu', 'relu', 'relu6', 'selu', 'leakyrelu', 'sigmoid', 'softmax', # 'softplus', 'softshrink', 'softsign', 'tanhshrink', 'logsigmoid', 'logsoftmax', 'hsigmoid'])" """ def __init__(self, act=None): super(Activation, self).__init__() self._act = act upper_act_names = nn.layer.activation.__dict__.keys() lower_act_names = [act.lower() for act in upper_act_names] act_dict = dict(zip(lower_act_names, upper_act_names)) if act is not None: if act in act_dict.keys(): act_name = act_dict[act] self.act_func = eval("nn.layer.activation.{}()".format( act_name)) else: raise KeyError("{} does not exist in the current {}".format( act, act_dict.keys())) def forward(self, x): if self._act is not None: return self.act_func(x) else: return x