Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,272 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
import mediapipe as mp
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torchvision.transforms as transforms
|
7 |
+
from PIL import Image
|
8 |
+
import gradio as gr
|
9 |
+
from enum import Enum
|
10 |
+
import colorsys
|
11 |
+
from typing import Tuple, Dict
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
class ClothingType(Enum):
|
15 |
+
SHIRT = "shirt"
|
16 |
+
PANTS = "pants"
|
17 |
+
DRESS = "dress"
|
18 |
+
JACKET = "jacket"
|
19 |
+
|
20 |
+
class BodySegmentation(nn.Module):
|
21 |
+
def __init__(self):
|
22 |
+
super().__init__()
|
23 |
+
# Load DeepLab v3+ for semantic segmentation
|
24 |
+
self.model = torch.hub.load('pytorch/vision:v0.10.0', 'deeplabv3_resnet50', pretrained=True)
|
25 |
+
self.model.eval()
|
26 |
+
|
27 |
+
def forward(self, x):
|
28 |
+
return self.model(x)['out']
|
29 |
+
|
30 |
+
class VirtualTryOn:
|
31 |
+
def __init__(self):
|
32 |
+
# Initialize MediaPipe
|
33 |
+
self.mp_pose = mp.solutions.pose
|
34 |
+
self.mp_holistic = mp.solutions.holistic
|
35 |
+
self.pose = self.mp_pose.Pose(
|
36 |
+
static_image_mode=True,
|
37 |
+
model_complexity=2,
|
38 |
+
min_detection_confidence=0.5
|
39 |
+
)
|
40 |
+
self.holistic = self.mp_holistic.Holistic(
|
41 |
+
static_image_mode=True,
|
42 |
+
model_complexity=2,
|
43 |
+
min_detection_confidence=0.5
|
44 |
+
)
|
45 |
+
|
46 |
+
# Initialize body segmentation
|
47 |
+
self.segmentation = BodySegmentation()
|
48 |
+
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
49 |
+
self.segmentation.to(self.device)
|
50 |
+
|
51 |
+
# Image transforms
|
52 |
+
self.transforms = transforms.Compose([
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize(mean=[0.485, 0.456, 0.406],
|
55 |
+
std=[0.229, 0.224, 0.225])
|
56 |
+
])
|
57 |
+
|
58 |
+
def get_body_segmentation(self, image: np.ndarray) -> np.ndarray:
|
59 |
+
"""
|
60 |
+
Get precise body segmentation mask
|
61 |
+
"""
|
62 |
+
# Prepare image for model
|
63 |
+
pil_image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
|
64 |
+
input_tensor = self.transforms(pil_image).unsqueeze(0).to(self.device)
|
65 |
+
|
66 |
+
# Get segmentation mask
|
67 |
+
with torch.no_grad():
|
68 |
+
output = self.segmentation(input_tensor)
|
69 |
+
mask = torch.argmax(output, dim=1).squeeze().cpu().numpy()
|
70 |
+
|
71 |
+
# Person class is typically index 15 in COCO dataset
|
72 |
+
return (mask == 15).astype(np.uint8)
|
73 |
+
|
74 |
+
def estimate_lighting(self, image: np.ndarray) -> Dict[str, float]:
|
75 |
+
"""
|
76 |
+
Estimate lighting conditions from the image
|
77 |
+
"""
|
78 |
+
# Convert to HSV
|
79 |
+
hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
|
80 |
+
|
81 |
+
# Get average brightness and saturation
|
82 |
+
brightness = np.mean(hsv[:, :, 2])
|
83 |
+
saturation = np.mean(hsv[:, :, 1])
|
84 |
+
|
85 |
+
return {
|
86 |
+
'brightness': brightness / 255.0,
|
87 |
+
'saturation': saturation / 255.0
|
88 |
+
}
|
89 |
+
|
90 |
+
def adjust_clothing_color(self, clothing: np.ndarray,
|
91 |
+
lighting_params: Dict[str, float]) -> np.ndarray:
|
92 |
+
"""
|
93 |
+
Adjust clothing colors to match lighting conditions
|
94 |
+
"""
|
95 |
+
# Convert to HSV for easier adjustment
|
96 |
+
hsv = cv2.cvtColor(clothing, cv2.COLOR_BGR2HSV).astype(np.float32)
|
97 |
+
|
98 |
+
# Adjust brightness and saturation
|
99 |
+
hsv[:, :, 2] *= lighting_params['brightness']
|
100 |
+
hsv[:, :, 1] *= lighting_params['saturation']
|
101 |
+
|
102 |
+
# Ensure values are within valid range
|
103 |
+
hsv = np.clip(hsv, 0, 255).astype(np.uint8)
|
104 |
+
|
105 |
+
# Convert back to BGR
|
106 |
+
return cv2.cvtColor(hsv, cv2.COLOR_HSV2BGR)
|
107 |
+
|
108 |
+
def get_clothing_dimensions(self, landmarks, image_shape: Tuple[int, int],
|
109 |
+
clothing_type: ClothingType) -> Dict:
|
110 |
+
"""
|
111 |
+
Get clothing dimensions based on body landmarks and clothing type
|
112 |
+
"""
|
113 |
+
height, width = image_shape[:2]
|
114 |
+
|
115 |
+
if clothing_type in [ClothingType.SHIRT, ClothingType.JACKET]:
|
116 |
+
# For upper body clothing
|
117 |
+
left_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_SHOULDER]
|
118 |
+
right_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.RIGHT_SHOULDER]
|
119 |
+
left_hip = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_HIP]
|
120 |
+
|
121 |
+
shoulder_width = abs(right_shoulder.x - left_shoulder.x) * width
|
122 |
+
torso_height = abs(left_shoulder.y - left_hip.y) * height
|
123 |
+
|
124 |
+
return {
|
125 |
+
'top_left': (
|
126 |
+
int(min(left_shoulder.x, right_shoulder.x) * width),
|
127 |
+
int(left_shoulder.y * height)
|
128 |
+
),
|
129 |
+
'width': int(shoulder_width * 1.3),
|
130 |
+
'height': int(torso_height * 1.1)
|
131 |
+
}
|
132 |
+
|
133 |
+
elif clothing_type == ClothingType.PANTS:
|
134 |
+
# For pants
|
135 |
+
left_hip = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_HIP]
|
136 |
+
right_hip = landmarks.landmark[self.mp_pose.PoseLandmark.RIGHT_HIP]
|
137 |
+
left_ankle = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_ANKLE]
|
138 |
+
|
139 |
+
hip_width = abs(right_hip.x - left_hip.x) * width
|
140 |
+
leg_height = abs(left_hip.y - left_ankle.y) * height
|
141 |
+
|
142 |
+
return {
|
143 |
+
'top_left': (
|
144 |
+
int(min(left_hip.x, right_hip.x) * width),
|
145 |
+
int(left_hip.y * height)
|
146 |
+
),
|
147 |
+
'width': int(hip_width * 1.5),
|
148 |
+
'height': int(leg_height * 1.05)
|
149 |
+
}
|
150 |
+
|
151 |
+
elif clothing_type == ClothingType.DRESS:
|
152 |
+
# For dresses
|
153 |
+
left_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_SHOULDER]
|
154 |
+
right_shoulder = landmarks.landmark[self.mp_pose.PoseLandmark.RIGHT_SHOULDER]
|
155 |
+
left_knee = landmarks.landmark[self.mp_pose.PoseLandmark.LEFT_KNEE]
|
156 |
+
|
157 |
+
shoulder_width = abs(right_shoulder.x - left_shoulder.x) * width
|
158 |
+
dress_height = abs(left_shoulder.y - left_knee.y) * height
|
159 |
+
|
160 |
+
return {
|
161 |
+
'top_left': (
|
162 |
+
int(min(left_shoulder.x, right_shoulder.x) * width),
|
163 |
+
int(left_shoulder.y * height)
|
164 |
+
),
|
165 |
+
'width': int(shoulder_width * 1.4),
|
166 |
+
'height': int(dress_height * 1.1)
|
167 |
+
}
|
168 |
+
|
169 |
+
def try_on(self, person_image: np.ndarray, clothing_image: np.ndarray,
|
170 |
+
clothing_type: ClothingType) -> np.ndarray:
|
171 |
+
"""
|
172 |
+
Enhanced try-on method with support for different clothing types
|
173 |
+
"""
|
174 |
+
# Get body segmentation
|
175 |
+
body_mask = self.get_body_segmentation(person_image)
|
176 |
+
|
177 |
+
# Get pose landmarks
|
178 |
+
results = self.pose.process(cv2.cvtColor(person_image, cv2.COLOR_BGR2RGB))
|
179 |
+
if not results.pose_landmarks:
|
180 |
+
raise ValueError("No person detected in the image")
|
181 |
+
|
182 |
+
# Estimate lighting conditions
|
183 |
+
lighting_params = self.estimate_lighting(person_image)
|
184 |
+
|
185 |
+
# Adjust clothing colors
|
186 |
+
adjusted_clothing = self.adjust_clothing_color(clothing_image, lighting_params)
|
187 |
+
|
188 |
+
# Get clothing dimensions
|
189 |
+
dimensions = self.get_clothing_dimensions(
|
190 |
+
results.pose_landmarks,
|
191 |
+
person_image.shape,
|
192 |
+
clothing_type
|
193 |
+
)
|
194 |
+
|
195 |
+
# Resize clothing
|
196 |
+
clothing_resized = cv2.resize(
|
197 |
+
adjusted_clothing,
|
198 |
+
(dimensions['width'], dimensions['height']),
|
199 |
+
interpolation=cv2.INTER_AREA
|
200 |
+
)
|
201 |
+
|
202 |
+
# Create alpha mask for smooth blending
|
203 |
+
if clothing_resized.shape[2] == 4:
|
204 |
+
alpha_channel = clothing_resized[:, :, 3] / 255.0
|
205 |
+
else:
|
206 |
+
alpha_channel = np.ones(clothing_resized.shape[:2])
|
207 |
+
|
208 |
+
alpha_3channel = np.stack([alpha_channel] * 3, axis=2)
|
209 |
+
|
210 |
+
# Calculate placement coordinates
|
211 |
+
y1 = dimensions['top_left'][1]
|
212 |
+
y2 = y1 + dimensions['height']
|
213 |
+
x1 = dimensions['top_left'][0]
|
214 |
+
x2 = x1 + dimensions['width']
|
215 |
+
|
216 |
+
# Ensure coordinates are within image boundaries
|
217 |
+
y1 = max(0, y1)
|
218 |
+
y2 = min(person_image.shape[0], y2)
|
219 |
+
x1 = max(0, x1)
|
220 |
+
x2 = min(person_image.shape[1], x2)
|
221 |
+
|
222 |
+
# Apply body mask to improve blending
|
223 |
+
body_mask_roi = body_mask[y1:y2, x1:x2]
|
224 |
+
alpha_3channel = alpha_3channel * np.expand_dims(body_mask_roi, axis=2)
|
225 |
+
|
226 |
+
# Blend images
|
227 |
+
roi = person_image[y1:y2, x1:x2]
|
228 |
+
clothing_rgb = clothing_resized[:, :, :3]
|
229 |
+
blended = (1 - alpha_3channel) * roi + alpha_3channel * clothing_rgb[:roi.shape[0], :roi.shape[1]]
|
230 |
+
|
231 |
+
result = person_image.copy()
|
232 |
+
result[y1:y2, x1:x2] = blended
|
233 |
+
|
234 |
+
return result
|
235 |
+
|
236 |
+
def create_gradio_interface():
|
237 |
+
def process_images(person_img, clothing_img, clothing_type):
|
238 |
+
try_on = VirtualTryOn()
|
239 |
+
|
240 |
+
# Convert clothing type string to enum
|
241 |
+
clothing_type_enum = ClothingType(clothing_type.lower())
|
242 |
+
|
243 |
+
# Process the images
|
244 |
+
result = try_on.try_on(person_img, clothing_img, clothing_type_enum)
|
245 |
+
|
246 |
+
return result
|
247 |
+
|
248 |
+
# Create the interface
|
249 |
+
iface = gr.Interface(
|
250 |
+
fn=process_images,
|
251 |
+
inputs=[
|
252 |
+
gr.Image(label="Upload Person Image"),
|
253 |
+
gr.Image(label="Upload Clothing Image"),
|
254 |
+
gr.Dropdown(
|
255 |
+
choices=["Shirt", "Pants", "Dress", "Jacket"],
|
256 |
+
label="Select Clothing Type"
|
257 |
+
)
|
258 |
+
],
|
259 |
+
outputs=gr.Image(label="Result"),
|
260 |
+
title="Virtual Try-On System",
|
261 |
+
description="Upload a person's image and a clothing item to see how it looks!",
|
262 |
+
examples=[
|
263 |
+
["person.jpg", "shirt.png", "Shirt"],
|
264 |
+
["person.jpg", "pants.png", "Pants"]
|
265 |
+
]
|
266 |
+
)
|
267 |
+
|
268 |
+
return iface
|
269 |
+
|
270 |
+
if __name__ == "__main__":
|
271 |
+
iface = create_gradio_interface()
|
272 |
+
iface.launch()
|