import gradio as gr def test(x, request: gr.Request): return request.query_params gr.Interface(test, "textbox", "textbox").launch() # from openai import OpenAI # import gradio as gr # import os, json # # Attempt to load configuration from config.json # try: # with open('config.json') as config_file: # config = json.load(config_file) # OPENAI_API_KEY = config.get("OPENAI_API_KEY") # SYSTEM_PROMPT = config.get("SYSTEM_PROMPT") # except FileNotFoundError: # # If config.json is not found, fall back to environment variables # OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT") # # Fallback to default values if necessary # if not OPENAI_API_KEY: # raise ValueError("OPENAI_API_KEY is not set in config.json or as an environment variable.") # if not SYSTEM_PROMPT: # SYSTEM_PROMPT = "This is a default system prompt." # client = OpenAI(api_key=OPENAI_API_KEY) # MODEL = "gpt-3.5-turbo" # def predict(message): # system_prompt = { # "role": "system", # "content": SYSTEM_PROMPT # } # history_openai_format = [system_prompt] # history_openai_format.append({"role": "user", "content": message}) # response = client.chat.completions.create(model=MODEL, # messages=history_openai_format, # temperature=1.0, # max_tokens=150, # stream=False) # return response.choices[0].message['content'] # # JavaScript function to get the question from URL on load # js_on_load = """ # function() { # const params = new URLSearchParams(window.location.search); # const question = params.get("question") || "Enter your question here"; # return [question]; # } # """ # with gr.Blocks() as app: # with gr.Row(): # question_input = gr.Textbox(label="Your Question", placeholder="Enter your question here") # submit_button = gr.Button("Submit") # answer_output = gr.Textbox(label="Answer", interactive=False) # submit_button.click(fn=predict, inputs=question_input, outputs=answer_output) # app.load(js=js_on_load) # Load the question from URL on startup # app.launch(share=True, debug=True) ###__________________________________________ # V0 # from openai import OpenAI # import gradio as gr # import os, json # # Attempt to load configuration from config.json # try: # with open('config.json') as config_file: # config = json.load(config_file) # OPENAI_API_KEY = config.get("OPENAI_API_KEY") # SYSTEM_PROMPT = config.get("SYSTEM_PROMPT") # except FileNotFoundError: # # If config.json is not found, fall back to environment variables # OPENAI_API_KEY = os.getenv("OPENAI_API_KEY") # SYSTEM_PROMPT = os.getenv("SYSTEM_PROMPT") # # Fallback to default values if necessary # if not OPENAI_API_KEY: # raise ValueError("OPENAI_API_KEY is not set in config.json or as an environment variable.") # if not SYSTEM_PROMPT: # SYSTEM_PROMPT = "This is a default system prompt." # client = OpenAI(api_key=OPENAI_API_KEY) # system_prompt = { # "role": "system", # "content": SYSTEM_PROMPT # } # MODEL = "gpt-3.5-turbo" # def predict(message, history): # history_openai_format = [system_prompt] # for human, assistant in history: # history_openai_format.append({"role": "user", "content": human }) # history_openai_format.append({"role": "assistant", "content":assistant}) # history_openai_format.append({"role": "user", "content": message}) # response = client.chat.completions.create(model=MODEL, # messages= history_openai_format, # temperature=1.0, # stream=True) # partial_message = "" # for chunk in response: # if chunk.choices[0].delta.content: # partial_message = partial_message + chunk.choices[0].delta.content # yield partial_message # gr.ChatInterface(predict).launch(share=True)