sifaaral commited on
Commit
f33cf84
·
verified ·
1 Parent(s): f3cae1d

Upload 3 files

Browse files
Files changed (3) hide show
  1. app.py +38 -0
  2. best_xgb_model.joblib +3 -0
  3. requirements.txt +12 -0
app.py ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import numpy as np
4
+ import joblib
5
+ from sklearn.preprocessing import StandardScaler
6
+
7
+ # Modeli yükle
8
+ model = joblib.load('best_xgb_model.joblib')
9
+
10
+ # Önemli özellikler (örnek olarak 106 adet özellik)
11
+ relevant_features = [f'feature_{i}' for i in range(1, 107)] # feature_1, feature_2, ..., feature_106
12
+
13
+ # Rastgele veriler oluştur
14
+ def generate_random_input():
15
+ random_data = {feature: np.random.uniform(0, 1) for feature in relevant_features}
16
+ return pd.DataFrame(random_data, index=[0])
17
+
18
+ # Rastgele veriyi al
19
+ input_data = generate_random_input()
20
+
21
+ # Özellikleri ölçeklendir
22
+ scaler = StandardScaler()
23
+ input_data_scaled = scaler.fit_transform(input_data)
24
+
25
+ # Tahmin yap
26
+ prediction = model.predict_proba(input_data_scaled)[:, 1]
27
+
28
+ # Sonucu göster
29
+ st.title('Santander Müşteri Memnuniyeti Tahmini')
30
+ st.subheader('Rastgele Oluşturulan Girdi')
31
+ st.write(input_data)
32
+
33
+ st.subheader('Tahmin Sonucu')
34
+ st.write(f'Müşteri Memnuniyeti Tahmini: {prediction[0]:.2f}')
35
+
36
+ # Uygulamayı çalıştırma
37
+ if __name__ == '__main__':
38
+ st.title('Santander Müşteri Memnuniyeti Tahmini')
best_xgb_model.joblib ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8de083f2f2f53757734fd6581ee4c5e38816831a2b3ea2a7be081d73c3b24fbb
3
+ size 561634
requirements.txt ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ tensorflow
3
+ opencv-python
4
+ scikit-learn
5
+ torch
6
+ torchvision
7
+ matplotlib
8
+ transformers
9
+ sentencepiece
10
+ plotly
11
+ xgboost
12
+ joblib