|
from flask import Flask, request, jsonify |
|
from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation |
|
from PIL import Image |
|
import torch |
|
import numpy as np |
|
import io |
|
import base64 |
|
import threading |
|
import time |
|
|
|
app = Flask(__name__) |
|
|
|
|
|
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") |
|
|
|
@app.route('/') |
|
def hello_world(): |
|
return 'Hello, World!' |
|
|
|
|
|
def process_image(image, prompt): |
|
inputs = processor( |
|
text=prompt, images=image, padding="max_length", return_tensors="pt" |
|
) |
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
preds = outputs.logits |
|
|
|
pred = torch.sigmoid(preds) |
|
mat = pred.cpu().numpy() |
|
mask = Image.fromarray(np.uint8(mat * 255), "L") |
|
mask = mask.convert("RGB") |
|
mask = mask.resize(image.size) |
|
mask = np.array(mask)[:, :, 0] |
|
|
|
mask_min = mask.min() |
|
mask_max = mask.max() |
|
mask = (mask - mask_min) / (mask_max - mask_min) |
|
|
|
return mask |
|
|
|
|
|
def get_masks(prompts, img, threshold): |
|
prompts = prompts.split(",") |
|
masks = [] |
|
for prompt in prompts: |
|
mask = process_image(img, prompt) |
|
mask = mask > threshold |
|
masks.append(mask) |
|
|
|
return masks |
|
|
|
|
|
@app.route('/api', methods=['POST']) |
|
def process_request(): |
|
data = request.json |
|
|
|
|
|
base64_image = data.get('image') |
|
image_data = base64.b64decode(base64_image.split(',')[1]) |
|
img = Image.open(io.BytesIO(image_data)) |
|
|
|
|
|
pos_prompts = data.get('positive_prompts', '') |
|
neg_prompts = data.get('negative_prompts', '') |
|
threshold = float(data.get('threshold', 0.4)) |
|
|
|
|
|
positive_masks = get_masks(pos_prompts, img, 0.5) |
|
negative_masks = get_masks(neg_prompts, img, 0.5) |
|
|
|
pos_mask = np.any(np.stack(positive_masks), axis=0) |
|
neg_mask = np.any(np.stack(negative_masks), axis=0) |
|
final_mask = pos_mask & ~neg_mask |
|
|
|
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L") |
|
|
|
|
|
buffered = io.BytesIO() |
|
final_mask.save(buffered, format="PNG") |
|
final_mask_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8") |
|
|
|
return jsonify({'final_mask_base64': final_mask_base64}) |
|
|
|
|
|
def keep_alive(): |
|
while True: |
|
time.sleep(300) |
|
requests.get('http://127.0.0.1:7860/') |
|
|
|
if __name__ == '__main__': |
|
print("Server starting. Verify it is running by visiting http://0.0.0.0:7860/") |
|
|
|
|
|
keep_alive_thread = threading.Thread(target=keep_alive) |
|
keep_alive_thread.start() |
|
|
|
app.run(host='0.0.0.0', port=7860, debug=True) |
|
|