Update app.py
Browse files
app.py
CHANGED
@@ -8,91 +8,74 @@ import threading
|
|
8 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
# Add your article and description here
|
16 |
-
gr.Markdown("Your article goes here")
|
17 |
-
gr.Markdown("Your description goes here")
|
18 |
-
|
19 |
-
with gr.Row():
|
20 |
-
with gr.Column():
|
21 |
-
input_image = gr.Image(type="pil")
|
22 |
-
positive_prompts = gr.Textbox(
|
23 |
-
label="Please describe what you want to identify (comma separated)"
|
24 |
-
)
|
25 |
-
negative_prompts = gr.Textbox(
|
26 |
-
label="Please describe what you want to ignore (comma separated)"
|
27 |
-
)
|
28 |
-
input_slider_T = gr.Slider(
|
29 |
-
minimum=0, maximum=1, value=0.4, label="Threshold"
|
30 |
-
)
|
31 |
-
btn_process = gr.Button(label="Process")
|
32 |
-
|
33 |
-
with gr.Column():
|
34 |
-
output_image = gr.Image(label="Result")
|
35 |
-
output_mask = gr.Image(label="Mask")
|
36 |
-
|
37 |
-
def process_image(image, prompt):
|
38 |
-
inputs = processor(
|
39 |
-
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
40 |
-
)
|
41 |
-
with torch.no_grad():
|
42 |
-
outputs = model(**inputs)
|
43 |
-
preds = outputs.logits
|
44 |
-
|
45 |
-
pred = torch.sigmoid(preds)
|
46 |
-
mat = pred.cpu().numpy()
|
47 |
-
mask = Image.fromarray(np.uint8(mat * 255), "L")
|
48 |
-
mask = mask.convert("RGB")
|
49 |
-
mask = mask.resize(image.size)
|
50 |
-
mask = np.array(mask)[:, :, 0]
|
51 |
-
|
52 |
-
mask_min = mask.min()
|
53 |
-
mask_max = mask.max()
|
54 |
-
mask = (mask - mask_min) / (mask_max - mask_min)
|
55 |
-
|
56 |
-
return mask
|
57 |
-
|
58 |
-
def get_masks(prompts, img, threshold):
|
59 |
-
prompts = prompts.split(",")
|
60 |
-
masks = []
|
61 |
-
for prompt in prompts:
|
62 |
-
mask = process_image(img, prompt)
|
63 |
-
mask = mask > threshold
|
64 |
-
masks.append(mask)
|
65 |
-
|
66 |
-
return masks
|
67 |
-
|
68 |
-
def extract_image(pos_prompts, neg_prompts, img, threshold):
|
69 |
-
positive_masks = get_masks(pos_prompts, img, 0.5)
|
70 |
-
negative_masks = get_masks(neg_prompts, img, 0.5)
|
71 |
-
|
72 |
-
pos_mask = np.any(np.stack(positive_masks), axis=0)
|
73 |
-
neg_mask = np.any(np.stack(negative_masks), axis=0)
|
74 |
-
final_mask = pos_mask & ~neg_mask
|
75 |
-
|
76 |
-
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
|
77 |
-
output_image = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
78 |
-
output_image.paste(img, mask=final_mask)
|
79 |
-
|
80 |
-
return output_image, final_mask
|
81 |
-
|
82 |
-
btn_process.click(
|
83 |
-
extract_image,
|
84 |
-
inputs=[
|
85 |
-
positive_prompts,
|
86 |
-
negative_prompts,
|
87 |
-
input_image,
|
88 |
-
input_slider_T,
|
89 |
-
],
|
90 |
-
outputs=[output_image, output_mask],
|
91 |
)
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
|
9 |
model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined")
|
10 |
|
11 |
+
# Function to process image and generate mask
|
12 |
+
def process_image(image, prompt):
|
13 |
+
inputs = processor(
|
14 |
+
text=prompt, images=image, padding="max_length", return_tensors="pt"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
)
|
16 |
+
with torch.no_grad():
|
17 |
+
outputs = model(**inputs)
|
18 |
+
preds = outputs.logits
|
19 |
+
|
20 |
+
pred = torch.sigmoid(preds)
|
21 |
+
mat = pred.cpu().numpy()
|
22 |
+
mask = Image.fromarray(np.uint8(mat * 255), "L")
|
23 |
+
mask = mask.convert("RGB")
|
24 |
+
mask = mask.resize(image.size)
|
25 |
+
mask = np.array(mask)[:, :, 0]
|
26 |
+
|
27 |
+
mask_min = mask.min()
|
28 |
+
mask_max = mask.max()
|
29 |
+
mask = (mask - mask_min) / (mask_max - mask_min)
|
30 |
+
|
31 |
+
return mask
|
32 |
+
|
33 |
+
# Function to get masks from positive or negative prompts
|
34 |
+
def get_masks(prompts, img, threshold):
|
35 |
+
prompts = prompts.split(",")
|
36 |
+
masks = []
|
37 |
+
for prompt in prompts:
|
38 |
+
mask = process_image(img, prompt)
|
39 |
+
mask = mask > threshold
|
40 |
+
masks.append(mask)
|
41 |
+
|
42 |
+
return masks
|
43 |
+
|
44 |
+
# Function to extract image using positive and negative prompts
|
45 |
+
def extract_image(pos_prompts, neg_prompts, img, threshold):
|
46 |
+
positive_masks = get_masks(pos_prompts, img, 0.5)
|
47 |
+
negative_masks = get_masks(neg_prompts, img, 0.5)
|
48 |
+
|
49 |
+
pos_mask = np.any(np.stack(positive_masks), axis=0)
|
50 |
+
neg_mask = np.any(np.stack(negative_masks), axis=0)
|
51 |
+
final_mask = pos_mask & ~neg_mask
|
52 |
+
|
53 |
+
final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L")
|
54 |
+
output_image = Image.new("RGBA", img.size, (0, 0, 0, 0))
|
55 |
+
output_image.paste(img, mask=final_mask)
|
56 |
+
|
57 |
+
return output_image, final_mask
|
58 |
+
|
59 |
+
# Define Gradio interface
|
60 |
+
iface = gr.Interface(
|
61 |
+
fn=extract_image,
|
62 |
+
inputs=[
|
63 |
+
gr.Textbox(
|
64 |
+
label="Please describe what you want to identify (comma separated)",
|
65 |
+
key="pos_prompts",
|
66 |
+
),
|
67 |
+
gr.Textbox(
|
68 |
+
label="Please describe what you want to ignore (comma separated)",
|
69 |
+
key="neg_prompts",
|
70 |
+
),
|
71 |
+
gr.Image(type="pil", label="Input Image", key="img"),
|
72 |
+
gr.Slider(minimum=0, maximum=1, default=0.4, label="Threshold", key="threshold"),
|
73 |
+
],
|
74 |
+
outputs=[
|
75 |
+
gr.Image(label="Result", key="output_image"),
|
76 |
+
gr.Image(label="Mask", key="output_mask"),
|
77 |
+
],
|
78 |
+
)
|
79 |
+
|
80 |
+
# Launch Gradio API
|
81 |
+
iface.launch()
|