from transformers import CLIPSegProcessor, CLIPSegForImageSegmentation import gradio as gr from PIL import Image import torch import numpy as np # Load CLIPSeg processor and model processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined") model = CLIPSegForImageSegmentation.from_pretrained("CIDAS/clipseg-rd64-refined") # Function to process image and generate mask def process_image(image, prompt): inputs = processor( text=prompt, images=image, padding="max_length", return_tensors="pt" ) with torch.no_grad(): outputs = model(**inputs) preds = outputs.logits pred = torch.sigmoid(preds) mat = pred.cpu().numpy() mask = Image.fromarray(np.uint8(mat * 255), "L") mask = mask.convert("RGB") mask = mask.resize(image.size) mask = np.array(mask)[:, :, 0] mask_min = mask.min() mask_max = mask.max() mask = (mask - mask_min) / (mask_max - mask_min) return mask # Function to get masks from positive or negative prompts def get_masks(prompts, img, threshold): prompts = prompts.split(",") masks = [] for prompt in prompts: mask = process_image(img, prompt) mask = mask > threshold masks.append(mask) return masks # Function to extract image using positive and negative prompts def extract_image(pos_prompts, neg_prompts, img, threshold): positive_masks = get_masks(pos_prompts, img, 0.5) negative_masks = get_masks(neg_prompts, img, 0.5) pos_mask = np.any(np.stack(positive_masks), axis=0) neg_mask = np.any(np.stack(negative_masks), axis=0) final_mask = pos_mask & ~neg_mask final_mask = Image.fromarray(final_mask.astype(np.uint8) * 255, "L") output_image = Image.new("RGBA", img.size, (0, 0, 0, 0)) output_image.paste(img, mask=final_mask) return output_image, final_mask # Define Gradio interface iface = gr.Interface( fn=extract_image, inputs=[ gr.Textbox( label="Please describe what you want to identify (comma separated)", key="pos_prompts", ), gr.Textbox( label="Please describe what you want to ignore (comma separated)", key="neg_prompts", ), gr.Image(type="pil", label="Input Image", key="img"), gr.Slider(minimum=0, maximum=1, default=0.4, label="Threshold", key="threshold"), ], outputs=[ gr.Image(label="Result", key="output_image"), gr.Image(label="Mask", key="output_mask"), ], ) # Launch Gradio API with an explicit endpoint iface.launch(share=True, debug=True, host="0.0.0.0", port=7860, open_browser=False)