sihar commited on
Commit
2f74ca6
·
1 Parent(s): dcde895

Upload 2 files

Browse files
Files changed (2) hide show
  1. app.py +78 -0
  2. requirements.txt +8 -0
app.py ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ import pickle
4
+ import tensorflow as tf
5
+ from tensorflow.keras.models import load_model
6
+
7
+ # import preproses
8
+ preproses = pickle.load(open("preproses.pkl", "rb"))
9
+
10
+ # import model
11
+ model = load_model('model.h5')
12
+
13
+ #title
14
+ st.title("Customer Churn Predictions")
15
+ st.write("Created by Sihar Pangaribuan")
16
+
17
+ # User imput
18
+ user_id = st.text_input('Input ID of a customer', value='')
19
+ age = st.number_input(label='Age of a customer', min_value=10, max_value=64, value=10, step=1)
20
+ gender = st.selectbox(label='Gender of a customer', options=['F','M'])
21
+ region_category = st.selectbox(label='Select Region that a customer belongs to', options=['City', 'Village', 'Town'])
22
+ membership_category = st.selectbox(label='Select Category of the membership that a customer is using', options=['No Membership', 'Basic Membership', 'Silver Membership', 'Premium Membership', 'Gold Membership', 'Platinum Membership'])
23
+ joining_date = st.text_input('Date when a customer became a member', value='')
24
+ joined_through_referral = st.selectbox(label='Whether a customer joined using any referral code or ID ?', options=['Yes','No'])
25
+ preferred_offer_types = st.selectbox(label='Select Type of offer that a customer prefers', options=['Without Offers', 'Credit/Debit Card Offers', 'Gift Vouchers/Coupons'])
26
+ medium_of_operation = st.selectbox(label='Select Medium of operation that a customer uses for transactions', options=['Desktop', 'Smartphone', 'Both'])
27
+ internet_option = st.selectbox(label='Select Type of internet service a customer uses', options=['Wi-Fi', 'Fiber_Optic', 'Mobile_Data'])
28
+ last_visit_time = st.text_input('Input The last time a customer visited the website', value='')
29
+ days_since_last_login = st.number_input(label='Imput Number of days since a customer last logged into the website', min_value=-999, max_value=26, value=-999, step=1)
30
+ avg_time_spent = st.number_input(label='Imput Average time spent by a customer on the website', min_value=0.0, max_value=3235.6, value=0.0, step=0.1)
31
+ avg_transaction_value = st.number_input(label='Imput Average transaction value of a customer', min_value=800.46, max_value=99914.05, value=800.46, step=0.1)
32
+ avg_frequency_login_days = st.number_input(label='Imput Number of times a customer has logged in to the website', min_value=0.0, max_value=73.07, value=0.0, step=0.1)
33
+ points_in_wallet = st.number_input(label='Imput Points awarded to a customer on each transaction', min_value=0.0, max_value=2069.06, value=0.0, step=0.1)
34
+ used_special_discount = st.selectbox(label='Whether a customer uses special discounts offered?', options=['Yes','No'])
35
+ offer_application_preference = st.selectbox(label='Whether a customer prefers offers?', options=['Yes','No'])
36
+ past_complaint = st.selectbox(label='Whether a customer has raised any complaints?', options=['Yes','No'])
37
+ complaint_status = st.selectbox(label='Select the complaint status', options=['No Information Available', 'Not Applicable', 'Unsolved', 'Solved', 'Solved in Follow-up'])
38
+ feedback = st.selectbox(label='Select the feedback', options=['Poor Website', 'Poor Customer Service', 'Too many ads', 'Poor Product Quality', 'No reason specified', 'Products always in Stock', 'Reasonable Price', 'Quality Customer Care', 'User Friendly Website'])
39
+
40
+ # Convert ke data frame
41
+ data = pd.DataFrame({
42
+ 'user_id':[user_id],
43
+ 'age':[age],
44
+ 'gender':[gender],
45
+ 'region_category':[region_category],
46
+ 'membership_category':[membership_category],
47
+ 'joining_date':[joining_date],
48
+ 'joined_through_referral':[joined_through_referral],
49
+ 'preferred_offer_types':[preferred_offer_types],
50
+ 'medium_of_operation':[medium_of_operation],
51
+ 'internet_option':[internet_option],
52
+ 'last_visit_time':[last_visit_time],
53
+ 'days_since_last_login':[days_since_last_login],
54
+ 'avg_time_spent':[avg_time_spent],
55
+ 'avg_transaction_value':[avg_transaction_value],
56
+ 'avg_frequency_login_days':[avg_frequency_login_days],
57
+ 'points_in_wallet':[points_in_wallet],
58
+ 'used_special_discount':[used_special_discount],
59
+ 'offer_application_preference':[offer_application_preference],
60
+ 'past_complaint':[past_complaint],
61
+ 'complaint_status':[complaint_status],
62
+ 'feedback':[feedback]
63
+ })
64
+
65
+ # Transfom data
66
+ data = preproses.transform(data)
67
+
68
+ # model predict
69
+ if st.button('Predict'):
70
+ prediction = model.predict(data).tolist()[0]
71
+
72
+ if prediction == 1:
73
+ prediction = 'Froud'
74
+ else:
75
+ prediction = 'Not Froud'
76
+
77
+ st.write('The Prediction is: ')
78
+ st.write(prediction)
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ numpy
4
+ scikit-learn
5
+ imbalanced-learn
6
+ daal4py
7
+ feature_engine
8
+ tensorflow-cpu