Spaces:
Running
Running
File size: 19,404 Bytes
7154df8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# app.py
import os
from flask import Flask, render_template, request, jsonify, redirect, url_for, flash, session
import requests
from werkzeug.utils import secure_filename
import google.generativeai as genai
from dotenv import load_dotenv
import base64
import json
from datetime import datetime, timedelta
import threading
import time
# Load environment variables
load_dotenv()
# Configure the Gemini API
# Try to get API key from environment variable, first from HF_SPACES then from .env file
# GEMINI_API_KEY = os.getenv("HF_GEMINI_API_KEY") or os.getenv("GEMINI_API_KEY")
GEMINI_API_KEY = os.getenv("HF_GEMINI_API_KEY") or os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
raise ValueError("Google API Key not found. Set it as GEMINI_API_KEY in the Space settings.")
genai.configure(api_key=GEMINI_API_KEY)
# Setup the Gemini model
model = genai.GenerativeModel('gemini-1.5-flash')
app = Flask(__name__)
app.secret_key = os.getenv("SECRET_KEY", "your-default-secret-key-for-flash-messages")
# Configure upload folder
UPLOAD_FOLDER = 'static/uploads'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}
if not os.path.exists(UPLOAD_FOLDER):
os.makedirs(UPLOAD_FOLDER)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER
def allowed_file(filename):
return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS
def encode_image(image_path):
with open(image_path, "rb") as image_file:
return base64.b64encode(image_file.read()).decode('utf-8')
def get_web_pesticide_info(disease, plant_type="Unknown"):
"""Fetch pesticide information from web sources for a specific disease and plant type"""
query = f"site:agrowon.esakal.com {disease} in {plant_type}"
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": os.getenv("GOOGLE_API_KEY"),
"cx": os.getenv("GOOGLE_CX"),
"q": query,
"num": 3
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
if "items" in data and len(data["items"]) > 0:
item = data["items"][0]
return {
"title": item.get("title", "No title available"),
"link": item.get("link", "#"),
"snippet": item.get("snippet", "No snippet available"),
"summary": item.get("snippet", "No snippet available")
}
except Exception as e:
print(f"Error retrieving web pesticide info: {str(e)}")
return None
def get_more_web_info(query):
"""Get more general web information based on a search query"""
url = "https://www.googleapis.com/customsearch/v1"
params = {
"key": os.getenv("GOOGLE_API_KEY"),
"cx": os.getenv("GOOGLE_CX"),
"q": query,
"num": 3
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
results = []
if "items" in data:
for item in data["items"]:
results.append({
"title": item.get("title", "No title available"),
"link": item.get("link", "#"),
"snippet": item.get("snippet", "No snippet available")
})
return results
except Exception as e:
print(f"Error retrieving additional articles: {str(e)}")
return []
def get_commercial_product_info(recommendation, disease_name):
"""Fetch commercial product information related to a pesticide recommendation.
If no relevant products are found from web sources, return default products based on issue type:
bacterial, fungicide (disease), or insecticide.
"""
indiamart_query = f"site:indiamart.com pesticide '{disease_name}' '{recommendation}'"
krishi_query = f"site:krishisevakendra.in/products pesticide '{disease_name}' '{recommendation}'"
indiamart_results = get_more_web_info(indiamart_query)
krishi_results = get_more_web_info(krishi_query)
# Merge results from both sources
results = indiamart_results + krishi_results
if not results:
lower_disease = disease_name.lower()
lower_recommendation = recommendation.lower()
# Bacterial fallback
if ("bacteria" in lower_disease or "bacterial" in lower_disease or
"bacteria" in lower_recommendation or "bacterial" in lower_recommendation):
results = [
{
"title": "UPL SAAF Carbendazin Mancozeb Bactericide",
"link": "https://www.amazon.in/UPL-SAAF-Carbendazinm12-Mancozeb63-Action/dp/B0DJLQRL44?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1BIAFERY87G8Q",
"snippet": "Bactericide for controlling bacterial infections."
},
{
"title": "Tropical Tagmycin Bactericide",
"link": "https://krushidukan.bharatagri.com/en/products/tropical-tagmycin-bactericide?variant=46519705895155&country=IN¤cy=INR&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic&srsltid=AfmBOoptFf8O3lpleZBgvI7pIOYUnHP6EWoZ-M6vGZ2er8VYU2PzVbkc7sc",
"snippet": "Bactericide for effective bacterial infection management."
}
]
# Fungicide / Disease fallback
elif ("fungus" in lower_disease or "fungicide" in lower_recommendation or
"antibiotic" in lower_recommendation or "disease" in lower_disease):
results = [
{
"title": "Plantomycin Bio Organic Antibiotic Effective Disease",
"link": "https://www.amazon.in/Plantomycin-Bio-Organic-Antibiotic-Effective-Disease/dp/B0DRVVJKQ4?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A2PDMX630A5EG6",
"snippet": "Bio organic antibiotic for effective control of plant diseases."
},
{
"title": "WET-TREE Larvicide Thuringiensis Insecticide",
"link": "https://www.amazon.in/WET-TREE-Larvicide-Thuringiensis-Insecticide/dp/B0D6R72KHV?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3V4YZ24A56I42",
"snippet": "Larvicide with thuringiensis for disease prevention."
},
{
"title": "WET-TREE Larvicide Thuringiensis Insecticide",
"link": "https://www.amazon.in/WET-TREE-Larvicide-Thuringiensis-Insecticide/dp/B0D6R72KHV?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3V4YZ24A56I42",
"snippet": "Larvicide with thuringiensis for disease prevention."
}
]
# Insecticide fallback
elif ("insecticide" in lower_disease or "insect" in lower_disease or "pest" in lower_disease or
"insecticide" in lower_recommendation or "insect" in lower_recommendation or "pest" in lower_recommendation):
results = [
{
"title": "Syngenta Actara Insecticide",
"link": "https://www.amazon.in/syngenta-Actara-Insect-Repellent-Insecticide/dp/B08W55XTHS?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3ABQWNNCUI42M",
"snippet": "Effective systemic insecticide for pest control."
},
{
"title": "Cyhalothrin Insecticide",
"link": "https://www.amazon.in/Cyhalothrin-Control-Eradication-Mosquitoes-Crawling/dp/B01N53VH1T?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1ZSKCLHK592D5",
"snippet": "Broad-spectrum insecticide for pest management."
}
]
# Default fallback to insecticide if none of the above match
else:
results = [
{
"title": "Syngenta Actara Insecticide",
"link": "https://www.amazon.in/syngenta-Actara-Insect-Repellent-Insecticide/dp/B08W55XTHS?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3ABQWNNCUI42M",
"snippet": "Effective systemic insecticide for pest control."
},
{
"title": "Cyhalothrin Insecticide",
"link": "https://www.amazon.in/Cyhalothrin-Control-Eradication-Mosquitoes-Crawling/dp/B01N53VH1T?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1ZSKCLHK592D5",
"snippet": "Broad-spectrum insecticide for pest management."
}
]
return results
def get_relevant_feedback(plant_name):
"""Retrieve feedback entries relevant to the given plant name from feedback.json."""
feedback_file = "feedback.json"
if os.path.exists(feedback_file):
try:
with open(feedback_file, "r") as f:
all_feedback = json.load(f)
# Filter feedback where the plant_name matches (case-insensitive)
relevant = [entry.get("feedback") for entry in all_feedback if entry.get("plant_name", "").lower() == plant_name.lower()]
# Optionally limit to a few items (e.g., first 3)
if relevant:
return " ".join(relevant[:3])
except Exception as e:
print(f"Error reading feedback for reinforcement: {e}")
return ""
def analyze_plant_image(image_path, plant_name, language):
try:
# Load the image
image_parts = [
{
"mime_type": "image/jpeg",
"data": encode_image(image_path)
}
]
# Load relevant feedback (reinforcement data) for this plant
feedback_context = get_relevant_feedback(plant_name)
feedback_instruction = f" Please consider the following user feedback from similar cases: {feedback_context}" if feedback_context else ""
# Create prompt for Gemini API with language instruction and feedback reinforcement if available
prompt = f"""
Analyze this image of a {plant_name} plant and prioritize determining if it's healthy or has a disease or pest infestation.
If a disease or pest is detected, remember the plant can be healthy too. Provide the following information in JSON format:
Check the {feedback_instruction} and then make the response after learning from that responses give around 60% weightage to the feedbck data.
{{
"results": [
{{
"type": "disease/pest",
"name": "Name of disease or pest",
"probability": "Probability as a percentage",
"symptoms": "Describe the visible symptoms",
"causes": "Main causes of the disease or pest",
"severity": "Low/Medium/High",
"spreading": "How it spreads",
"treatment": "Treatment options",
"prevention": "Preventive measures"
}},
{{
// Second most likely disease/pest with the same structure
}},
{{
// Third most likely disease/pest with the same structure
}}
],
"is_healthy": boolean indicating if the plant appears healthy,
"confidence": "Overall confidence in the analysis as a percentage"
}}
Only return the JSON data and nothing else. Ensure the JSON is valid and properly formatted.
If the plant appears completely healthy, set is_healthy to true and include an empty results array.
Additionally, provide the response in {language} language.
and at end show which all data from feedback was taken into consederation and if no data was taken so no data.
"""
# Send request to Gemini API
response = model.generate_content([prompt] + image_parts)
# Extract the JSON response
response_text = response.text
# Find JSON within response text if needed
json_start = response_text.find('{')
json_end = response_text.rfind('}') + 1
if json_start >= 0 and json_end > 0:
json_str = response_text[json_start:json_end]
return json.loads(json_str)
else:
# Return a default response if JSON parsing fails
return {
"error": "Failed to parse the API response",
"raw_response": response_text
}
except Exception as e:
return {
"error": str(e),
"is_healthy": None,
"results": []
}
def cleanup_old_files(directory, max_age_hours=1): # Reduced to 1 hour for Hugging Face
"""Remove files older than the specified age from the directory"""
while True:
now = datetime.now()
for filename in os.listdir(directory):
if filename == '.gitkeep': # Skip the .gitkeep file
continue
file_path = os.path.join(directory, filename)
file_age = now - datetime.fromtimestamp(os.path.getctime(file_path))
if file_age > timedelta(hours=max_age_hours):
try:
os.remove(file_path)
print(f"Removed old file: {file_path}")
except Exception as e:
print(f"Error removing {file_path}: {e}")
# Sleep for 5 minutes before checking again
time.sleep(300) # 5 minutes
@app.route('/', methods=['GET'])
def index():
# GET request - show the upload form
return render_template('index.html', show_results=False)
@app.route('/feedback', methods=['POST'])
def feedback():
# Get feedback from form submission
feedback_text = request.form.get("feedback")
plant_name = request.form.get("plant_name", "Unknown") # Optional: include plant name for context
if not feedback_text:
flash("Please provide your feedback before submitting.")
return redirect(url_for('index'))
# Create a feedback record with a timestamp
feedback_data = {
"plant_name": plant_name,
"feedback": feedback_text,
"timestamp": datetime.now().isoformat()
}
# Define the file to store feedback
feedback_file = "feedback.json"
# Load existing feedback (if any)
if os.path.exists(feedback_file):
try:
with open(feedback_file, "r") as f:
existing_feedback = json.load(f)
except Exception as e:
print(f"Error reading feedback file: {e}")
existing_feedback = []
else:
existing_feedback = []
# Append the new feedback and save it back to file
existing_feedback.append(feedback_data)
try:
with open(feedback_file, "w") as f:
json.dump(existing_feedback, f, indent=4)
except Exception as e:
flash(f"Error saving your feedback: {str(e)}")
return redirect(url_for('index'))
flash("Thank you for your feedback!")
return redirect(url_for('index'))
@app.route('/analyze', methods=['POST'])
def analyze():
if 'plant_image' not in request.files:
flash('No file part')
return redirect(url_for('index'))
file = request.files['plant_image']
plant_name = request.form.get('plant_name', 'unknown')
language = request.form.get('language', 'English') # New field for response language
if file.filename == '':
flash('No selected file')
return redirect(url_for('index'))
if file and allowed_file(file.filename):
# Generate a unique filename to avoid collisions
timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
original_filename = secure_filename(file.filename)
filename = f"{timestamp}_{original_filename}"
file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
file.save(file_path)
try:
# Analyze the image with language parameter
analysis_result = analyze_plant_image(file_path, plant_name, language)
if 'error' in analysis_result:
flash(f"Error analyzing image: {analysis_result['error']}")
if os.path.exists(file_path):
os.remove(file_path)
return redirect(url_for('index'))
# Get additional web information for detected diseases/pests
web_info = {}
product_info = {}
if not analysis_result.get('is_healthy', False) and 'results' in analysis_result:
for result in analysis_result['results']:
disease_name = result.get('name', '')
if disease_name:
web_info[disease_name] = get_web_pesticide_info(disease_name, plant_name)
treatment = result.get('treatment', '')
if treatment:
product_info[disease_name] = get_commercial_product_info(treatment, disease_name)
response = render_template(
'results.html',
results=analysis_result,
plant_name=plant_name,
image_path=file_path.replace('static/', '', 1),
web_info=web_info,
product_info=product_info
)
def delete_file_after_delay(path, delay=30):
time.sleep(delay)
if os.path.exists(path):
try:
os.remove(path)
print(f"Deleted analyzed file: {path}")
except Exception as e:
print(f"Error deleting {path}: {e}")
threading.Thread(
target=delete_file_after_delay,
args=(file_path,),
daemon=True
).start()
return response
except Exception as e:
flash(f"An error occurred: {str(e)}")
if os.path.exists(file_path):
os.remove(file_path)
return redirect(url_for('index'))
flash('Invalid file type. Please upload an image (png, jpg, jpeg, gif).')
return redirect(url_for('index'))
# Hugging Face Spaces requires the app to be available on port 7860
if __name__ == '__main__':
# Start the cleanup thread when the app starts
cleanup_thread = threading.Thread(target=cleanup_old_files, args=(app.config['UPLOAD_FOLDER'],), daemon=True)
cleanup_thread.start()
# Get the port from environment variable for Hugging Face Spaces compatibility
port = int(os.environ.get("PORT", 7860))
app.run(host='0.0.0.0', port=port) |