File size: 19,404 Bytes
7154df8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
# app.py
import os
from flask import Flask, render_template, request, jsonify, redirect, url_for, flash, session
import requests
from werkzeug.utils import secure_filename
import google.generativeai as genai
from dotenv import load_dotenv
import base64
import json
from datetime import datetime, timedelta
import threading
import time

# Load environment variables
load_dotenv()

# Configure the Gemini API
# Try to get API key from environment variable, first from HF_SPACES then from .env file
# GEMINI_API_KEY = os.getenv("HF_GEMINI_API_KEY") or os.getenv("GEMINI_API_KEY")
GEMINI_API_KEY = os.getenv("HF_GEMINI_API_KEY") or os.getenv("GEMINI_API_KEY")
if not GEMINI_API_KEY:
    raise ValueError("Google API Key not found. Set it as GEMINI_API_KEY in the Space settings.")

genai.configure(api_key=GEMINI_API_KEY)

# Setup the Gemini model
model = genai.GenerativeModel('gemini-1.5-flash')

app = Flask(__name__)
app.secret_key = os.getenv("SECRET_KEY", "your-default-secret-key-for-flash-messages")

# Configure upload folder
UPLOAD_FOLDER = 'static/uploads'
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg', 'gif'}

if not os.path.exists(UPLOAD_FOLDER):
    os.makedirs(UPLOAD_FOLDER)

app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def get_web_pesticide_info(disease, plant_type="Unknown"):
    """Fetch pesticide information from web sources for a specific disease and plant type"""
    query = f"site:agrowon.esakal.com {disease} in {plant_type}"
    url = "https://www.googleapis.com/customsearch/v1"
    params = {
        "key": os.getenv("GOOGLE_API_KEY"),
        "cx": os.getenv("GOOGLE_CX"),
        "q": query,
        "num": 3
    }
    try:
        response = requests.get(url, params=params)
        response.raise_for_status()
        data = response.json()
        if "items" in data and len(data["items"]) > 0:
            item = data["items"][0]
            return {
                "title": item.get("title", "No title available"),
                "link": item.get("link", "#"),
                "snippet": item.get("snippet", "No snippet available"),
                "summary": item.get("snippet", "No snippet available")
            }
    except Exception as e:
        print(f"Error retrieving web pesticide info: {str(e)}")
    return None

def get_more_web_info(query):
    """Get more general web information based on a search query"""
    url = "https://www.googleapis.com/customsearch/v1"
    params = {
        "key": os.getenv("GOOGLE_API_KEY"),
        "cx": os.getenv("GOOGLE_CX"),
        "q": query,
        "num": 3
    }
    try:
        response = requests.get(url, params=params)
        response.raise_for_status()
        data = response.json()
        results = []
        if "items" in data:
            for item in data["items"]:
                results.append({
                    "title": item.get("title", "No title available"),
                    "link": item.get("link", "#"),
                    "snippet": item.get("snippet", "No snippet available")
                })
        return results
    except Exception as e:
        print(f"Error retrieving additional articles: {str(e)}")
    return []

def get_commercial_product_info(recommendation, disease_name):
    """Fetch commercial product information related to a pesticide recommendation.

    If no relevant products are found from web sources, return default products based on issue type:

    bacterial, fungicide (disease), or insecticide.

    """
    indiamart_query = f"site:indiamart.com pesticide '{disease_name}' '{recommendation}'"
    krishi_query = f"site:krishisevakendra.in/products pesticide '{disease_name}' '{recommendation}'"
    
    indiamart_results = get_more_web_info(indiamart_query)
    krishi_results = get_more_web_info(krishi_query)
    
    # Merge results from both sources
    results = indiamart_results + krishi_results

    if not results:
        lower_disease = disease_name.lower()
        lower_recommendation = recommendation.lower()
        
        # Bacterial fallback
        if ("bacteria" in lower_disease or "bacterial" in lower_disease or
            "bacteria" in lower_recommendation or "bacterial" in lower_recommendation):
            results = [
                {
                    "title": "UPL SAAF Carbendazin Mancozeb Bactericide",
                    "link": "https://www.amazon.in/UPL-SAAF-Carbendazinm12-Mancozeb63-Action/dp/B0DJLQRL44?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1BIAFERY87G8Q",
                    "snippet": "Bactericide for controlling bacterial infections."
                },
                {
                    "title": "Tropical Tagmycin Bactericide",
                    "link": "https://krushidukan.bharatagri.com/en/products/tropical-tagmycin-bactericide?variant=46519705895155&country=IN&currency=INR&utm_medium=product_sync&utm_source=google&utm_content=sag_organic&utm_campaign=sag_organic&srsltid=AfmBOoptFf8O3lpleZBgvI7pIOYUnHP6EWoZ-M6vGZ2er8VYU2PzVbkc7sc",
                    "snippet": "Bactericide for effective bacterial infection management."
                }
            ]
        # Fungicide / Disease fallback
        elif ("fungus" in lower_disease or "fungicide" in lower_recommendation or 
              "antibiotic" in lower_recommendation or "disease" in lower_disease):
            results = [
                {
                    "title": "Plantomycin Bio Organic Antibiotic Effective Disease",
                    "link": "https://www.amazon.in/Plantomycin-Bio-Organic-Antibiotic-Effective-Disease/dp/B0DRVVJKQ4?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A2PDMX630A5EG6",
                    "snippet": "Bio organic antibiotic for effective control of plant diseases."
                },
                {
                    "title": "WET-TREE Larvicide Thuringiensis Insecticide",
                    "link": "https://www.amazon.in/WET-TREE-Larvicide-Thuringiensis-Insecticide/dp/B0D6R72KHV?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3V4YZ24A56I42",
                    "snippet": "Larvicide with thuringiensis for disease prevention."
                },
                {
                    "title": "WET-TREE Larvicide Thuringiensis Insecticide",
                    "link": "https://www.amazon.in/WET-TREE-Larvicide-Thuringiensis-Insecticide/dp/B0D6R72KHV?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3V4YZ24A56I42",
                    "snippet": "Larvicide with thuringiensis for disease prevention."
                }
            ]
        # Insecticide fallback
        elif ("insecticide" in lower_disease or "insect" in lower_disease or "pest" in lower_disease or
              "insecticide" in lower_recommendation or "insect" in lower_recommendation or "pest" in lower_recommendation):
            results = [
                {
                    "title": "Syngenta Actara Insecticide",
                    "link": "https://www.amazon.in/syngenta-Actara-Insect-Repellent-Insecticide/dp/B08W55XTHS?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3ABQWNNCUI42M",
                    "snippet": "Effective systemic insecticide for pest control."
                },
                {
                    "title": "Cyhalothrin Insecticide",
                    "link": "https://www.amazon.in/Cyhalothrin-Control-Eradication-Mosquitoes-Crawling/dp/B01N53VH1T?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1ZSKCLHK592D5",
                    "snippet": "Broad-spectrum insecticide for pest management."
                }
            ]
        # Default fallback to insecticide if none of the above match
        else:
            results = [
                {
                    "title": "Syngenta Actara Insecticide",
                    "link": "https://www.amazon.in/syngenta-Actara-Insect-Repellent-Insecticide/dp/B08W55XTHS?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A3ABQWNNCUI42M",
                    "snippet": "Effective systemic insecticide for pest control."
                },
                {
                    "title": "Cyhalothrin Insecticide",
                    "link": "https://www.amazon.in/Cyhalothrin-Control-Eradication-Mosquitoes-Crawling/dp/B01N53VH1T?source=ps-sl-shoppingads-lpcontext&ref_=fplfs&psc=1&smid=A1ZSKCLHK592D5",
                    "snippet": "Broad-spectrum insecticide for pest management."
                }
            ]
    
    return results


def get_relevant_feedback(plant_name):
    """Retrieve feedback entries relevant to the given plant name from feedback.json."""
    feedback_file = "feedback.json"
    if os.path.exists(feedback_file):
        try:
            with open(feedback_file, "r") as f:
                all_feedback = json.load(f)
            # Filter feedback where the plant_name matches (case-insensitive)
            relevant = [entry.get("feedback") for entry in all_feedback if entry.get("plant_name", "").lower() == plant_name.lower()]
            # Optionally limit to a few items (e.g., first 3)
            if relevant:
                return " ".join(relevant[:3])
        except Exception as e:
            print(f"Error reading feedback for reinforcement: {e}")
    return ""


def analyze_plant_image(image_path, plant_name, language):
    try:
        # Load the image
        image_parts = [
            {
                "mime_type": "image/jpeg",
                "data": encode_image(image_path)
            }
        ]
        
        # Load relevant feedback (reinforcement data) for this plant
        feedback_context = get_relevant_feedback(plant_name)
        feedback_instruction = f" Please consider the following user feedback from similar cases: {feedback_context}" if feedback_context else ""
        
        # Create prompt for Gemini API with language instruction and feedback reinforcement if available
        prompt = f"""

        Analyze this image of a {plant_name} plant and prioritize determining if it's healthy or has a disease or pest infestation.

        

        If a disease or pest is detected, remember the plant can be healthy too. Provide the following information in JSON format:

        Check the {feedback_instruction} and then make the response after learning from that responses give around 60% weightage to the feedbck data.

        {{

            "results": [

                {{

                    "type": "disease/pest",

                    "name": "Name of disease or pest",

                    "probability": "Probability as a percentage",

                    "symptoms": "Describe the visible symptoms",

                    "causes": "Main causes of the disease or pest",

                    "severity": "Low/Medium/High",

                    "spreading": "How it spreads",

                    "treatment": "Treatment options",

                    "prevention": "Preventive measures"

                }},

                {{

                    // Second most likely disease/pest with the same structure

                }},

                {{

                    // Third most likely disease/pest with the same structure

                }}

            ],

            "is_healthy": boolean indicating if the plant appears healthy,

            "confidence": "Overall confidence in the analysis as a percentage"

        }}

        

        Only return the JSON data and nothing else. Ensure the JSON is valid and properly formatted.

        If the plant appears completely healthy, set is_healthy to true and include an empty results array.

        Additionally, provide the response in {language} language.

        and at end show which all data from feedback was taken into consederation and if no data was taken so no data.

        """
        
        # Send request to Gemini API
        response = model.generate_content([prompt] + image_parts)
        
        # Extract the JSON response
        response_text = response.text
        
        # Find JSON within response text if needed
        json_start = response_text.find('{')
        json_end = response_text.rfind('}') + 1
        
        if json_start >= 0 and json_end > 0:
            json_str = response_text[json_start:json_end]
            return json.loads(json_str)
        else:
            # Return a default response if JSON parsing fails
            return {
                "error": "Failed to parse the API response",
                "raw_response": response_text
            }
            
    except Exception as e:
        return {
            "error": str(e),
            "is_healthy": None,
            "results": []
        }


def cleanup_old_files(directory, max_age_hours=1):  # Reduced to 1 hour for Hugging Face
    """Remove files older than the specified age from the directory"""
    while True:
        now = datetime.now()
        for filename in os.listdir(directory):
            if filename == '.gitkeep':  # Skip the .gitkeep file
                continue
                
            file_path = os.path.join(directory, filename)
            file_age = now - datetime.fromtimestamp(os.path.getctime(file_path))
            if file_age > timedelta(hours=max_age_hours):
                try:
                    os.remove(file_path)
                    print(f"Removed old file: {file_path}")
                except Exception as e:
                    print(f"Error removing {file_path}: {e}")
        # Sleep for 5 minutes before checking again
        time.sleep(300)  # 5 minutes

@app.route('/', methods=['GET'])
def index():
    # GET request - show the upload form
    return render_template('index.html', show_results=False)

@app.route('/feedback', methods=['POST'])
def feedback():
    # Get feedback from form submission
    feedback_text = request.form.get("feedback")
    plant_name = request.form.get("plant_name", "Unknown")  # Optional: include plant name for context

    if not feedback_text:
        flash("Please provide your feedback before submitting.")
        return redirect(url_for('index'))

    # Create a feedback record with a timestamp
    feedback_data = {
        "plant_name": plant_name,
        "feedback": feedback_text,
        "timestamp": datetime.now().isoformat()
    }

    # Define the file to store feedback
    feedback_file = "feedback.json"

    # Load existing feedback (if any)
    if os.path.exists(feedback_file):
        try:
            with open(feedback_file, "r") as f:
                existing_feedback = json.load(f)
        except Exception as e:
            print(f"Error reading feedback file: {e}")
            existing_feedback = []
    else:
        existing_feedback = []

    # Append the new feedback and save it back to file
    existing_feedback.append(feedback_data)
    try:
        with open(feedback_file, "w") as f:
            json.dump(existing_feedback, f, indent=4)
    except Exception as e:
        flash(f"Error saving your feedback: {str(e)}")
        return redirect(url_for('index'))

    flash("Thank you for your feedback!")
    return redirect(url_for('index'))

@app.route('/analyze', methods=['POST'])
def analyze():
    if 'plant_image' not in request.files:
        flash('No file part')
        return redirect(url_for('index'))
    
    file = request.files['plant_image']
    plant_name = request.form.get('plant_name', 'unknown')
    language = request.form.get('language', 'English')  # New field for response language
    
    if file.filename == '':
        flash('No selected file')
        return redirect(url_for('index'))
    
    if file and allowed_file(file.filename):
        # Generate a unique filename to avoid collisions
        timestamp = datetime.now().strftime("%Y%m%d%H%M%S")
        original_filename = secure_filename(file.filename)
        filename = f"{timestamp}_{original_filename}"
        file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(file_path)
        
        try:
            # Analyze the image with language parameter
            analysis_result = analyze_plant_image(file_path, plant_name, language)
            
            if 'error' in analysis_result:
                flash(f"Error analyzing image: {analysis_result['error']}")
                if os.path.exists(file_path):
                    os.remove(file_path)
                return redirect(url_for('index'))
            
            # Get additional web information for detected diseases/pests
            web_info = {}
            product_info = {}
            
            if not analysis_result.get('is_healthy', False) and 'results' in analysis_result:
                for result in analysis_result['results']:
                    disease_name = result.get('name', '')
                    if disease_name:
                        web_info[disease_name] = get_web_pesticide_info(disease_name, plant_name)
                        treatment = result.get('treatment', '')
                        if treatment:
                            product_info[disease_name] = get_commercial_product_info(treatment, disease_name)
            
            response = render_template(
                'results.html',
                results=analysis_result,
                plant_name=plant_name,
                image_path=file_path.replace('static/', '', 1),
                web_info=web_info,
                product_info=product_info
            )
            
            def delete_file_after_delay(path, delay=30):
                time.sleep(delay)
                if os.path.exists(path):
                    try:
                        os.remove(path)
                        print(f"Deleted analyzed file: {path}")
                    except Exception as e:
                        print(f"Error deleting {path}: {e}")
            
            threading.Thread(
                target=delete_file_after_delay, 
                args=(file_path,), 
                daemon=True
            ).start()
            
            return response
            
        except Exception as e:
            flash(f"An error occurred: {str(e)}")
            if os.path.exists(file_path):
                os.remove(file_path)
            return redirect(url_for('index'))
    
    flash('Invalid file type. Please upload an image (png, jpg, jpeg, gif).')
    return redirect(url_for('index'))


# Hugging Face Spaces requires the app to be available on port 7860
if __name__ == '__main__':
    # Start the cleanup thread when the app starts
    cleanup_thread = threading.Thread(target=cleanup_old_files, args=(app.config['UPLOAD_FOLDER'],), daemon=True)
    cleanup_thread.start()
    
    # Get the port from environment variable for Hugging Face Spaces compatibility
    port = int(os.environ.get("PORT", 7860))
    app.run(host='0.0.0.0', port=port)