Spaces:
Sleeping
Sleeping
Upload 6 files
Browse files- Dockerfile +24 -0
- README.md +59 -10
- app.py +337 -0
- requirements.txt +11 -0
- templates/index.html +1069 -0
- yolov8n.pt +3 -0
Dockerfile
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9-slim
|
2 |
+
|
3 |
+
WORKDIR /app
|
4 |
+
|
5 |
+
# Install system dependencies
|
6 |
+
RUN apt-get update && apt-get install -y --no-install-recommends \
|
7 |
+
libgl1-mesa-glx \
|
8 |
+
libglib2.0-0 \
|
9 |
+
libsm6 \
|
10 |
+
libxext6 \
|
11 |
+
libxrender-dev \
|
12 |
+
ffmpeg \
|
13 |
+
&& apt-get clean \
|
14 |
+
&& rm -rf /var/lib/apt/lists/*
|
15 |
+
|
16 |
+
# Copy requirements and install
|
17 |
+
COPY requirements.txt .
|
18 |
+
RUN pip install --no-cache-dir -r requirements.txt
|
19 |
+
|
20 |
+
# Copy the rest of the application
|
21 |
+
COPY . .
|
22 |
+
|
23 |
+
# Command to run the application
|
24 |
+
CMD ["python", "app.py"]
|
README.md
CHANGED
@@ -1,10 +1,59 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Intrusion Detection System
|
2 |
+
|
3 |
+
## Overview
|
4 |
+
|
5 |
+
The Intrusion Detection System is designed to monitor environments using computer vision techniques. It can process real-time video feeds or uploaded images to detect potential intrusions and other relevant activities. The system utilizes YOLOv8, a state-of-the-art object detection model, to analyze video streams and images for detection purposes.
|
6 |
+
|
7 |
+
## Features
|
8 |
+
|
9 |
+
- **Real-Time Video Feed**: Monitors live video from a webcam or camera for immediate detection.
|
10 |
+
- **Image Upload**: Allows users to upload images for detection.
|
11 |
+
- **Intrusion Detection**: Utilizes YOLOv8 for accurate detection of intruders and relevant objects.
|
12 |
+
- **User-Friendly Interface**: Simple and intuitive interface for selecting video or image upload options.
|
13 |
+
|
14 |
+
## Technologies Used
|
15 |
+
|
16 |
+
- **Flask**: Web framework for building the application.
|
17 |
+
- **OpenCV**: Library for computer vision tasks.
|
18 |
+
- **YOLOv8**: Object detection model used for analyzing video and images.
|
19 |
+
- **HTML/CSS/JavaScript**: Frontend technologies for building the user interface.
|
20 |
+
|
21 |
+
## Installation
|
22 |
+
|
23 |
+
### Prerequisites
|
24 |
+
|
25 |
+
- Python 3.9
|
26 |
+
|
27 |
+
### Clone the Repository
|
28 |
+
|
29 |
+
```bash
|
30 |
+
git clone https://github.com/yourusername/intrusion-detection.git
|
31 |
+
```
|
32 |
+
|
33 |
+
|
34 |
+
### Install Dependencies
|
35 |
+
|
36 |
+
```bash
|
37 |
+
pip install -r requirements.txt
|
38 |
+
```
|
39 |
+
|
40 |
+
### Model File
|
41 |
+
|
42 |
+
Make sure to download the YOLOv8 model file (`yolov8n.pt`) and place it in the project directory.
|
43 |
+
|
44 |
+
## Running the Application
|
45 |
+
|
46 |
+
1. Start the Flask server:
|
47 |
+
|
48 |
+
```bash
|
49 |
+
python app.py
|
50 |
+
```
|
51 |
+
|
52 |
+
2. Open a web browser and navigate to `http://localhost:5000`.
|
53 |
+
|
54 |
+
3. Choose between real-time video feed or image upload to detect intrusions.
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
- **Real-Time Video Feed**: Click the "Real-Time Video Feed" button to start the video stream from your camera. Use the "Play" and "Pause" buttons to control the video feed.
|
59 |
+
- **Upload Image**: Click the "Upload Image" button to select an image file from your device and get detection results.
|
app.py
ADDED
@@ -0,0 +1,337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from flask import Flask, render_template, Response, jsonify
|
2 |
+
import cv2
|
3 |
+
import time
|
4 |
+
import numpy as np
|
5 |
+
import threading
|
6 |
+
import requests
|
7 |
+
import os
|
8 |
+
import atexit
|
9 |
+
from twilio.rest import Client
|
10 |
+
from datetime import datetime
|
11 |
+
from dotenv import load_dotenv
|
12 |
+
|
13 |
+
# Load environment variables
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
app = Flask(__name__)
|
17 |
+
|
18 |
+
# For deployment in Hugging Face Spaces, we'll use environment variables with fallbacks
|
19 |
+
TWILIO_ACCOUNT_SID = os.getenv("TWILIO_ACCOUNT_SID", "AC3988de38b87b0de231ee7704d9e6dafb")
|
20 |
+
TWILIO_AUTH_TOKEN = os.getenv("TWILIO_AUTH_TOKEN", "2a282eeb0a72c2a2bec9a1331d3cc803")
|
21 |
+
TWILIO_FROM_NUMBER = os.getenv("TWILIO_FROM_NUMBER", "+19046820459")
|
22 |
+
TWILIO_TO_NUMBER = os.getenv("TWILIO_TO_NUMBER", "+918999094929")
|
23 |
+
TELEGRAM_TOKEN = os.getenv("TELEGRAM_TOKEN", "7289300782:AAF0qzc38BQ1S5a4kyXj7F02kUjIswb1YDY")
|
24 |
+
TELEGRAM_CHAT_ID = os.getenv("TELEGRAM_CHAT_ID", "6186075118")
|
25 |
+
ROBOFLOW_API_KEY = os.getenv("ROBOFLOW_API_KEY", "IkQtIl5NGRTc0llwyIMo")
|
26 |
+
SITE_LOCATION = os.getenv("SITE_LOCATION", "1234 Main St, City, Country")
|
27 |
+
|
28 |
+
# Initialize webcam or use a placeholder for Hugging Face
|
29 |
+
# In HF Spaces, we'll use a dummy camera for demo purposes
|
30 |
+
try:
|
31 |
+
camera = cv2.VideoCapture(0)
|
32 |
+
if not camera.isOpened():
|
33 |
+
raise Exception("Could not open camera")
|
34 |
+
except Exception as e:
|
35 |
+
print(f"Camera error: {e}. Using demo mode.")
|
36 |
+
USE_DEMO_MODE = True
|
37 |
+
# Create a black frame as placeholder
|
38 |
+
demo_frame = np.zeros((480, 640, 3), dtype=np.uint8)
|
39 |
+
|
40 |
+
# Add text to the frame
|
41 |
+
cv2.putText(
|
42 |
+
demo_frame,
|
43 |
+
"Demo Mode - No Camera Access",
|
44 |
+
(50, 240),
|
45 |
+
cv2.FONT_HERSHEY_SIMPLEX,
|
46 |
+
1,
|
47 |
+
(255, 255, 255),
|
48 |
+
2
|
49 |
+
)
|
50 |
+
else:
|
51 |
+
USE_DEMO_MODE = False
|
52 |
+
|
53 |
+
# Initialize the Roboflow Inference Client
|
54 |
+
try:
|
55 |
+
from inference_sdk import InferenceHTTPClient
|
56 |
+
CLIENT = InferenceHTTPClient(
|
57 |
+
api_url="https://detect.roboflow.com",
|
58 |
+
api_key=ROBOFLOW_API_KEY
|
59 |
+
)
|
60 |
+
except ImportError:
|
61 |
+
print("Inference SDK not available. Using placeholder detection.")
|
62 |
+
CLIENT = None
|
63 |
+
|
64 |
+
# Detection settings
|
65 |
+
DETECTION_INTERVAL = 3 # seconds
|
66 |
+
ALERT_INTERVAL = 300 # seconds
|
67 |
+
last_alert_time = 0
|
68 |
+
|
69 |
+
# Cooldown for updating detection counts (in seconds)
|
70 |
+
DETECTION_COOLDOWN = 10
|
71 |
+
last_count_time = 0
|
72 |
+
|
73 |
+
# Define the classes for this project
|
74 |
+
PROJECT_CLASSES = [
|
75 |
+
"Balls", "Bird", "Cat", "Dog", "Elephant", "Pig", "Tikus",
|
76 |
+
"apple", "bean", "bunny", "cattle", "cute", "leopard", "lion",
|
77 |
+
"rat", "standpig", "tiger", "Person"
|
78 |
+
]
|
79 |
+
|
80 |
+
# Store detection statistics
|
81 |
+
detection_counts = {cls: 0 for cls in PROJECT_CLASSES}
|
82 |
+
|
83 |
+
# Alert history
|
84 |
+
alert_history = []
|
85 |
+
|
86 |
+
def cleanup():
|
87 |
+
"""Release the camera when the application exits."""
|
88 |
+
global camera
|
89 |
+
if not USE_DEMO_MODE and camera is not None and camera.isOpened():
|
90 |
+
camera.release()
|
91 |
+
print("Camera released.")
|
92 |
+
|
93 |
+
# Register cleanup function to run on exit
|
94 |
+
atexit.register(cleanup)
|
95 |
+
|
96 |
+
def make_call():
|
97 |
+
"""Initiate a call using Twilio."""
|
98 |
+
try:
|
99 |
+
client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN)
|
100 |
+
call = client.calls.create(
|
101 |
+
url="http://demo.twilio.com/docs/voice.xml",
|
102 |
+
to=TWILIO_TO_NUMBER,
|
103 |
+
from_=TWILIO_FROM_NUMBER
|
104 |
+
)
|
105 |
+
print("Call initiated. Call SID:", call.sid)
|
106 |
+
return True
|
107 |
+
except Exception as e:
|
108 |
+
print(f"Failed to make call: {e}")
|
109 |
+
return False
|
110 |
+
|
111 |
+
def send_telegram_message(image, caption):
|
112 |
+
"""Send an alert image with caption via Telegram."""
|
113 |
+
try:
|
114 |
+
send_photo_url = f"https://api.telegram.org/bot{TELEGRAM_TOKEN}/sendPhoto"
|
115 |
+
ret, buffer = cv2.imencode('.jpg', image)
|
116 |
+
if not ret:
|
117 |
+
print("Failed to encode image.")
|
118 |
+
return False
|
119 |
+
|
120 |
+
files = {"photo": ("alert.jpg", buffer.tobytes(), "image/jpeg")}
|
121 |
+
data = {"chat_id": TELEGRAM_CHAT_ID, "caption": caption}
|
122 |
+
response = requests.post(send_photo_url, data=data, files=files)
|
123 |
+
|
124 |
+
if response.status_code == 200:
|
125 |
+
print("Telegram alert sent.")
|
126 |
+
return True
|
127 |
+
else:
|
128 |
+
print(f"Failed to send Telegram alert. Status code: {response.status_code}")
|
129 |
+
return False
|
130 |
+
except Exception as e:
|
131 |
+
print(f"Error sending Telegram message: {e}")
|
132 |
+
return False
|
133 |
+
|
134 |
+
def play_siren():
|
135 |
+
"""Play a siren sound alert - this won't work in HF Spaces."""
|
136 |
+
print("Alert sound would play here (disabled in HF Spaces)")
|
137 |
+
|
138 |
+
def process_frame(frame):
|
139 |
+
"""Process a frame for object detection."""
|
140 |
+
global detection_counts, last_count_time
|
141 |
+
|
142 |
+
if CLIENT is None:
|
143 |
+
# Generate demo predictions if Roboflow isn't available
|
144 |
+
predictions = [
|
145 |
+
{
|
146 |
+
'class': 'Person',
|
147 |
+
'confidence': 0.92,
|
148 |
+
'x': frame.shape[1] // 2,
|
149 |
+
'y': frame.shape[0] // 2,
|
150 |
+
'width': 100,
|
151 |
+
'height': 200
|
152 |
+
}
|
153 |
+
]
|
154 |
+
detected_objects = {'Person': 1}
|
155 |
+
return predictions, detected_objects
|
156 |
+
|
157 |
+
# Save the frame temporarily for inference
|
158 |
+
image_path = "/tmp/temp_frame.jpg"
|
159 |
+
cv2.imwrite(image_path, frame)
|
160 |
+
|
161 |
+
try:
|
162 |
+
# Perform object detection using Roboflow
|
163 |
+
result = CLIENT.infer(image_path, model_id="yolov8n-640")
|
164 |
+
predictions = result.get('predictions', [])
|
165 |
+
except Exception as e:
|
166 |
+
print(f"Error during inference: {e}")
|
167 |
+
predictions = []
|
168 |
+
|
169 |
+
detected_objects = {}
|
170 |
+
current_frame_time = time.time()
|
171 |
+
|
172 |
+
# Only update detection counts if the cooldown period has passed
|
173 |
+
if current_frame_time - last_count_time >= DETECTION_COOLDOWN:
|
174 |
+
for obj in predictions:
|
175 |
+
class_name = obj['class']
|
176 |
+
# Perform case-insensitive matching
|
177 |
+
for project_class in PROJECT_CLASSES:
|
178 |
+
if class_name.lower() == project_class.lower():
|
179 |
+
detection_counts[project_class] = detection_counts.get(project_class, 0) + 1
|
180 |
+
detected_objects[project_class] = detected_objects.get(project_class, 0) + 1
|
181 |
+
break
|
182 |
+
last_count_time = current_frame_time
|
183 |
+
|
184 |
+
# Clean up temporary file
|
185 |
+
try:
|
186 |
+
if os.path.exists(image_path):
|
187 |
+
os.remove(image_path)
|
188 |
+
except Exception as e:
|
189 |
+
print(f"Failed to remove temporary file: {e}")
|
190 |
+
|
191 |
+
return predictions, detected_objects
|
192 |
+
|
193 |
+
def gen_frames():
|
194 |
+
"""Video streaming with object detection."""
|
195 |
+
global last_alert_time, alert_history
|
196 |
+
|
197 |
+
while True:
|
198 |
+
if USE_DEMO_MODE:
|
199 |
+
# In demo mode, generate a dynamic demo frame
|
200 |
+
frame = demo_frame.copy()
|
201 |
+
|
202 |
+
# Add a moving element to show it's active
|
203 |
+
t = time.time()
|
204 |
+
x = int(320 + 200 * np.sin(t))
|
205 |
+
y = int(240 + 100 * np.cos(t))
|
206 |
+
cv2.circle(frame, (x, y), 20, (0, 165, 255), -1)
|
207 |
+
|
208 |
+
# Generate some random detections for demo
|
209 |
+
if time.time() % 10 < 5: # Every 5 seconds
|
210 |
+
predictions = [
|
211 |
+
{
|
212 |
+
'class': 'Person',
|
213 |
+
'confidence': 0.92,
|
214 |
+
'x': x,
|
215 |
+
'y': y,
|
216 |
+
'width': 100,
|
217 |
+
'height': 200
|
218 |
+
}
|
219 |
+
]
|
220 |
+
else:
|
221 |
+
predictions = []
|
222 |
+
|
223 |
+
detected_objects = {'Person': 1} if predictions else {}
|
224 |
+
else:
|
225 |
+
# Normal camera mode
|
226 |
+
success, frame = camera.read()
|
227 |
+
if not success:
|
228 |
+
print("Failed to capture frame from camera")
|
229 |
+
time.sleep(0.1)
|
230 |
+
continue
|
231 |
+
|
232 |
+
# Process frame for object detection
|
233 |
+
predictions, detected_objects = process_frame(frame)
|
234 |
+
|
235 |
+
# Draw detections on the frame
|
236 |
+
for obj in predictions:
|
237 |
+
x, y, w, h = int(obj['x']), int(obj['y']), int(obj['width']), int(obj['height'])
|
238 |
+
class_name = obj['class']
|
239 |
+
confidence = obj['confidence']
|
240 |
+
|
241 |
+
# Use different colors based on the class (case-insensitive check)
|
242 |
+
color = (0, 255, 0) # Default green
|
243 |
+
if class_name.lower() == "person":
|
244 |
+
color = (0, 0, 255) # Red for persons
|
245 |
+
|
246 |
+
# Draw rectangle around the object
|
247 |
+
cv2.rectangle(frame, (x - w // 2, y - h // 2), (x + w // 2, y + h // 2), color, 2)
|
248 |
+
|
249 |
+
# Add a label with class name and confidence
|
250 |
+
label = f"{class_name}: {confidence:.2f}"
|
251 |
+
(text_width, text_height), _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
|
252 |
+
cv2.rectangle(frame, (x - w // 2, y - h // 2 - text_height - 5),
|
253 |
+
(x - w // 2 + text_width, y - h // 2), color, -1)
|
254 |
+
cv2.putText(frame, label, (x - w // 2, y - h // 2 - 5),
|
255 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2)
|
256 |
+
|
257 |
+
# Alert if any object from the project classes is detected and the alert interval has passed
|
258 |
+
current_time = time.time()
|
259 |
+
if detected_objects and (current_time - last_alert_time >= ALERT_INTERVAL):
|
260 |
+
# Get the current date and time
|
261 |
+
detected_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
262 |
+
|
263 |
+
# Create a caption listing the detected classes with timestamp and location
|
264 |
+
caption = (
|
265 |
+
f"Alert! Detected: {', '.join(detected_objects.keys())}\n"
|
266 |
+
f"Time: {detected_time}\n"
|
267 |
+
f"Location: {SITE_LOCATION}"
|
268 |
+
)
|
269 |
+
|
270 |
+
# Add to alert history
|
271 |
+
alert_info = {
|
272 |
+
"time": detected_time,
|
273 |
+
"objects": list(detected_objects.keys()),
|
274 |
+
"counts": detected_objects
|
275 |
+
}
|
276 |
+
alert_history.append(alert_info)
|
277 |
+
|
278 |
+
# Keep only the last 10 alerts
|
279 |
+
if len(alert_history) > 10:
|
280 |
+
alert_history.pop(0)
|
281 |
+
|
282 |
+
# In a real environment, we would start alert threads
|
283 |
+
# In HF Spaces, we'll just log the alerts
|
284 |
+
print(f"Alert triggered: {caption}")
|
285 |
+
|
286 |
+
last_alert_time = current_time
|
287 |
+
|
288 |
+
# Add timestamp to frame
|
289 |
+
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
290 |
+
cv2.putText(frame, timestamp, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 2)
|
291 |
+
|
292 |
+
# Encode the frame for streaming
|
293 |
+
ret, buffer = cv2.imencode('.jpg', frame)
|
294 |
+
if not ret:
|
295 |
+
continue
|
296 |
+
|
297 |
+
yield (b'--frame\r\n'
|
298 |
+
b'Content-Type: image/jpeg\r\n\r\n' + buffer.tobytes() + b'\r\n')
|
299 |
+
|
300 |
+
# Add a small delay to control frame rate
|
301 |
+
time.sleep(0.05)
|
302 |
+
|
303 |
+
@app.route('/')
|
304 |
+
def index():
|
305 |
+
return render_template('index.html')
|
306 |
+
|
307 |
+
@app.route('/video_feed')
|
308 |
+
def video_feed():
|
309 |
+
return Response(gen_frames(), mimetype='multipart/x-mixed-replace; boundary=frame')
|
310 |
+
|
311 |
+
@app.route('/detection_data')
|
312 |
+
def detection_data():
|
313 |
+
"""Return the current detection counts as JSON."""
|
314 |
+
filtered_counts = {k: v for k, v in detection_counts.items() if v > 0}
|
315 |
+
return jsonify(filtered_counts)
|
316 |
+
|
317 |
+
@app.route('/alert_history')
|
318 |
+
def get_alert_history():
|
319 |
+
"""Return the history of alerts as JSON."""
|
320 |
+
return jsonify(alert_history)
|
321 |
+
|
322 |
+
@app.route('/reset_counts')
|
323 |
+
def reset_counts():
|
324 |
+
"""Reset all detection counts."""
|
325 |
+
global detection_counts
|
326 |
+
detection_counts = {cls: 0 for cls in PROJECT_CLASSES}
|
327 |
+
return jsonify({"status": "success", "message": "Detection counts reset"})
|
328 |
+
|
329 |
+
# Add a dummy route for Hugging Face Spaces healthcheck
|
330 |
+
@app.route('/healthcheck')
|
331 |
+
def healthcheck():
|
332 |
+
return jsonify({"status": "healthy"})
|
333 |
+
|
334 |
+
if __name__ == '__main__':
|
335 |
+
# Get port from environment (needed for Hugging Face Spaces)
|
336 |
+
port = int(os.environ.get('PORT', 7860))
|
337 |
+
app.run(host='0.0.0.0', port=port)
|
requirements.txt
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Flask
|
2 |
+
ultralytics
|
3 |
+
opencv-python
|
4 |
+
Pillow
|
5 |
+
opencv-python-headless==4.7.0.72
|
6 |
+
numpy==1.23.5
|
7 |
+
requests==2.28.2
|
8 |
+
twilio==7.16.4
|
9 |
+
playsound==1.3.0
|
10 |
+
inference_sdk
|
11 |
+
python-dotenv==1.0.0
|
templates/index.html
ADDED
@@ -0,0 +1,1069 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>Advanced Security Monitoring System</title>
|
7 |
+
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" />
|
8 |
+
<meta http-equiv="Pragma" content="no-cache" />
|
9 |
+
<meta http-equiv="Expires" content="0" />
|
10 |
+
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
|
11 |
+
<style>
|
12 |
+
:root {
|
13 |
+
--primary-color: #2563eb;
|
14 |
+
--primary-dark: #1d4ed8;
|
15 |
+
--primary-light: #3b82f6;
|
16 |
+
--secondary-color: #10b981;
|
17 |
+
--danger-color: #ef4444;
|
18 |
+
--warning-color: #f59e0b;
|
19 |
+
--neutral-dark: #171717;
|
20 |
+
--neutral: #262626;
|
21 |
+
--neutral-light: #404040;
|
22 |
+
--background-color: #f9fafb;
|
23 |
+
--card-color: #ffffff;
|
24 |
+
--text-color: #111827;
|
25 |
+
--text-secondary: #6b7280;
|
26 |
+
--text-light: #9ca3af;
|
27 |
+
--border-color: #e5e7eb;
|
28 |
+
--shadow: 0 4px 6px rgba(0, 0, 0, 0.05);
|
29 |
+
--border-radius: 0.5rem;
|
30 |
+
}
|
31 |
+
|
32 |
+
/* Dark mode */
|
33 |
+
.dark-mode {
|
34 |
+
--primary-color: #3b82f6;
|
35 |
+
--primary-dark: #2563eb;
|
36 |
+
--primary-light: #60a5fa;
|
37 |
+
--secondary-color: #10b981;
|
38 |
+
--background-color: #0f172a;
|
39 |
+
--card-color: #1e293b;
|
40 |
+
--text-color: #f9fafb;
|
41 |
+
--text-secondary: #cbd5e1;
|
42 |
+
--text-light: #94a3b8;
|
43 |
+
--border-color: #334155;
|
44 |
+
--neutral-dark: #f9fafb;
|
45 |
+
--neutral: #e5e7eb;
|
46 |
+
--neutral-light: #d1d5db;
|
47 |
+
}
|
48 |
+
|
49 |
+
* {
|
50 |
+
margin: 0;
|
51 |
+
padding: 0;
|
52 |
+
box-sizing: border-box;
|
53 |
+
transition: background-color 0.3s, color 0.3s;
|
54 |
+
}
|
55 |
+
|
56 |
+
body {
|
57 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
58 |
+
background-color: var(--background-color);
|
59 |
+
color: var(--text-color);
|
60 |
+
display: flex;
|
61 |
+
flex-direction: column;
|
62 |
+
min-height: 100vh;
|
63 |
+
position: relative;
|
64 |
+
}
|
65 |
+
|
66 |
+
.header {
|
67 |
+
background-color: var(--card-color);
|
68 |
+
color: var(--text-color);
|
69 |
+
padding: 1rem 2rem;
|
70 |
+
display: flex;
|
71 |
+
justify-content: space-between;
|
72 |
+
align-items: center;
|
73 |
+
box-shadow: var(--shadow);
|
74 |
+
border-bottom: 1px solid var(--border-color);
|
75 |
+
position: sticky;
|
76 |
+
top: 0;
|
77 |
+
z-index: 100;
|
78 |
+
}
|
79 |
+
|
80 |
+
.header-title {
|
81 |
+
display: flex;
|
82 |
+
align-items: center;
|
83 |
+
gap: 0.75rem;
|
84 |
+
}
|
85 |
+
|
86 |
+
.header-title i {
|
87 |
+
color: var(--primary-color);
|
88 |
+
}
|
89 |
+
|
90 |
+
.header h1 {
|
91 |
+
font-size: 1.25rem;
|
92 |
+
margin: 0;
|
93 |
+
font-weight: 600;
|
94 |
+
}
|
95 |
+
|
96 |
+
.header-actions {
|
97 |
+
display: flex;
|
98 |
+
align-items: center;
|
99 |
+
gap: 1.5rem;
|
100 |
+
}
|
101 |
+
|
102 |
+
.header-actions div {
|
103 |
+
display: flex;
|
104 |
+
align-items: center;
|
105 |
+
gap: 0.5rem;
|
106 |
+
}
|
107 |
+
|
108 |
+
.header-actions i {
|
109 |
+
font-size: 1.25rem;
|
110 |
+
color: var(--primary-color);
|
111 |
+
}
|
112 |
+
|
113 |
+
.container {
|
114 |
+
display: flex;
|
115 |
+
flex: 1;
|
116 |
+
position: relative;
|
117 |
+
}
|
118 |
+
|
119 |
+
.sidebar {
|
120 |
+
width: 320px;
|
121 |
+
background-color: var(--card-color);
|
122 |
+
border-right: 1px solid var(--border-color);
|
123 |
+
padding: 1.5rem;
|
124 |
+
overflow-y: auto;
|
125 |
+
transition: all 0.3s ease;
|
126 |
+
height: calc(100vh - 64px);
|
127 |
+
position: sticky;
|
128 |
+
top: 64px;
|
129 |
+
}
|
130 |
+
|
131 |
+
.sidebar-header {
|
132 |
+
display: flex;
|
133 |
+
justify-content: space-between;
|
134 |
+
align-items: center;
|
135 |
+
margin-bottom: 1.5rem;
|
136 |
+
padding-bottom: 0.75rem;
|
137 |
+
border-bottom: 2px solid var(--primary-color);
|
138 |
+
}
|
139 |
+
|
140 |
+
.main-content {
|
141 |
+
flex: 1;
|
142 |
+
padding: 1.5rem;
|
143 |
+
overflow-y: auto;
|
144 |
+
display: flex;
|
145 |
+
flex-direction: column;
|
146 |
+
gap: 1.5rem;
|
147 |
+
}
|
148 |
+
|
149 |
+
.dashboard-grid {
|
150 |
+
display: grid;
|
151 |
+
grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));
|
152 |
+
gap: 1.5rem;
|
153 |
+
}
|
154 |
+
|
155 |
+
.section-title {
|
156 |
+
color: var(--text-color);
|
157 |
+
font-size: 1.1rem;
|
158 |
+
margin-bottom: 1rem;
|
159 |
+
padding-bottom: 0.5rem;
|
160 |
+
border-bottom: 2px solid var(--primary-color);
|
161 |
+
display: flex;
|
162 |
+
align-items: center;
|
163 |
+
justify-content: space-between;
|
164 |
+
}
|
165 |
+
|
166 |
+
.section-title button {
|
167 |
+
background: none;
|
168 |
+
border: none;
|
169 |
+
color: var(--primary-color);
|
170 |
+
cursor: pointer;
|
171 |
+
font-size: 0.9rem;
|
172 |
+
display: flex;
|
173 |
+
align-items: center;
|
174 |
+
gap: 0.25rem;
|
175 |
+
padding: 0.25rem 0.5rem;
|
176 |
+
border-radius: var(--border-radius);
|
177 |
+
}
|
178 |
+
|
179 |
+
.section-title button:hover {
|
180 |
+
background-color: rgba(59, 130, 246, 0.1);
|
181 |
+
}
|
182 |
+
|
183 |
+
.card {
|
184 |
+
background-color: var(--card-color);
|
185 |
+
border-radius: var(--border-radius);
|
186 |
+
box-shadow: var(--shadow);
|
187 |
+
padding: 1.5rem;
|
188 |
+
margin-bottom: 1.5rem;
|
189 |
+
border-top: 4px solid var(--primary-color);
|
190 |
+
}
|
191 |
+
|
192 |
+
.video-container {
|
193 |
+
position: relative;
|
194 |
+
overflow: hidden;
|
195 |
+
border-radius: var(--border-radius);
|
196 |
+
background-color: #000;
|
197 |
+
box-shadow: var(--shadow);
|
198 |
+
aspect-ratio: 16/9;
|
199 |
+
}
|
200 |
+
|
201 |
+
.video-feed {
|
202 |
+
width: 100%;
|
203 |
+
height: 100%;
|
204 |
+
object-fit: cover;
|
205 |
+
border-radius: var(--border-radius);
|
206 |
+
display: block;
|
207 |
+
border: none;
|
208 |
+
}
|
209 |
+
|
210 |
+
.status {
|
211 |
+
position: absolute;
|
212 |
+
top: 15px;
|
213 |
+
right: 15px;
|
214 |
+
background-color: rgba(0, 0, 0, 0.6);
|
215 |
+
color: white;
|
216 |
+
padding: 0.5rem 0.75rem;
|
217 |
+
border-radius: 20px;
|
218 |
+
font-size: 0.9rem;
|
219 |
+
display: flex;
|
220 |
+
align-items: center;
|
221 |
+
gap: 8px;
|
222 |
+
}
|
223 |
+
|
224 |
+
.status-dot {
|
225 |
+
height: 10px;
|
226 |
+
width: 10px;
|
227 |
+
background-color: var(--primary-color);
|
228 |
+
border-radius: 50%;
|
229 |
+
display: inline-block;
|
230 |
+
animation: pulse 1.5s infinite;
|
231 |
+
}
|
232 |
+
|
233 |
+
.feed-controls {
|
234 |
+
display: flex;
|
235 |
+
justify-content: space-between;
|
236 |
+
margin-top: 1rem;
|
237 |
+
}
|
238 |
+
|
239 |
+
.camera-controls {
|
240 |
+
display: flex;
|
241 |
+
gap: 1rem;
|
242 |
+
}
|
243 |
+
|
244 |
+
.control-btn {
|
245 |
+
background-color: var(--card-color);
|
246 |
+
color: var(--text-color);
|
247 |
+
border: 1px solid var(--border-color);
|
248 |
+
border-radius: var(--border-radius);
|
249 |
+
padding: 0.5rem 1rem;
|
250 |
+
display: flex;
|
251 |
+
align-items: center;
|
252 |
+
gap: 0.5rem;
|
253 |
+
cursor: pointer;
|
254 |
+
transition: all 0.2s ease;
|
255 |
+
font-size: 0.9rem;
|
256 |
+
}
|
257 |
+
|
258 |
+
.control-btn:hover {
|
259 |
+
background-color: var(--primary-color);
|
260 |
+
color: white;
|
261 |
+
}
|
262 |
+
|
263 |
+
.alert-btn {
|
264 |
+
background-color: var(--danger-color);
|
265 |
+
color: white;
|
266 |
+
border: none;
|
267 |
+
}
|
268 |
+
|
269 |
+
.alert-btn:hover {
|
270 |
+
background-color: #dc2626;
|
271 |
+
}
|
272 |
+
|
273 |
+
@keyframes pulse {
|
274 |
+
0% { opacity: 1; }
|
275 |
+
50% { opacity: 0.5; }
|
276 |
+
100% { opacity: 1; }
|
277 |
+
}
|
278 |
+
|
279 |
+
.detection-list {
|
280 |
+
list-style: none;
|
281 |
+
margin-top: 0.5rem;
|
282 |
+
max-height: 300px;
|
283 |
+
overflow-y: auto;
|
284 |
+
}
|
285 |
+
|
286 |
+
.detection-item {
|
287 |
+
display: flex;
|
288 |
+
justify-content: space-between;
|
289 |
+
padding: 0.75rem;
|
290 |
+
border-bottom: 1px solid var(--border-color);
|
291 |
+
transition: background-color 0.2s ease;
|
292 |
+
align-items: center;
|
293 |
+
}
|
294 |
+
|
295 |
+
.detection-item:hover {
|
296 |
+
background-color: rgba(59, 130, 246, 0.1);
|
297 |
+
}
|
298 |
+
|
299 |
+
.detection-item:last-child {
|
300 |
+
border-bottom: none;
|
301 |
+
}
|
302 |
+
|
303 |
+
.detection-label {
|
304 |
+
display: flex;
|
305 |
+
align-items: center;
|
306 |
+
gap: 0.5rem;
|
307 |
+
}
|
308 |
+
|
309 |
+
.detection-icon {
|
310 |
+
width: 24px;
|
311 |
+
height: 24px;
|
312 |
+
display: flex;
|
313 |
+
align-items: center;
|
314 |
+
justify-content: center;
|
315 |
+
}
|
316 |
+
|
317 |
+
.detection-count {
|
318 |
+
background-color: var(--primary-color);
|
319 |
+
color: white;
|
320 |
+
padding: 0.25rem 0.5rem;
|
321 |
+
border-radius: 12px;
|
322 |
+
font-size: 0.8rem;
|
323 |
+
min-width: 2rem;
|
324 |
+
text-align: center;
|
325 |
+
}
|
326 |
+
|
327 |
+
.alert-info {
|
328 |
+
background-color: rgba(59, 130, 246, 0.1);
|
329 |
+
border-left: 4px solid var(--primary-color);
|
330 |
+
padding: 1rem;
|
331 |
+
margin-top: 1rem;
|
332 |
+
border-radius: 4px;
|
333 |
+
display: flex;
|
334 |
+
align-items: center;
|
335 |
+
gap: 10px;
|
336 |
+
}
|
337 |
+
|
338 |
+
.alert-info i {
|
339 |
+
color: var(--primary-color);
|
340 |
+
font-size: 1.2rem;
|
341 |
+
}
|
342 |
+
|
343 |
+
.alert-history {
|
344 |
+
max-height: 300px;
|
345 |
+
overflow-y: auto;
|
346 |
+
}
|
347 |
+
|
348 |
+
.alert-card {
|
349 |
+
padding: 1rem;
|
350 |
+
border-radius: var(--border-radius);
|
351 |
+
margin-bottom: 1rem;
|
352 |
+
border-left: 4px solid var(--danger-color);
|
353 |
+
background-color: rgba(239, 68, 68, 0.1);
|
354 |
+
}
|
355 |
+
|
356 |
+
.alert-card:last-child {
|
357 |
+
margin-bottom: 0;
|
358 |
+
}
|
359 |
+
|
360 |
+
.alert-header {
|
361 |
+
display: flex;
|
362 |
+
justify-content: space-between;
|
363 |
+
margin-bottom: 0.5rem;
|
364 |
+
font-weight: 500;
|
365 |
+
color: var(--danger-color);
|
366 |
+
}
|
367 |
+
|
368 |
+
.alert-details {
|
369 |
+
display: flex;
|
370 |
+
gap: 0.5rem;
|
371 |
+
flex-wrap: wrap;
|
372 |
+
}
|
373 |
+
|
374 |
+
.alert-tag {
|
375 |
+
background-color: var(--danger-color);
|
376 |
+
color: white;
|
377 |
+
border-radius: 12px;
|
378 |
+
padding: 0.25rem 0.75rem;
|
379 |
+
font-size: 0.8rem;
|
380 |
+
}
|
381 |
+
|
382 |
+
#graph-container {
|
383 |
+
height: 300px;
|
384 |
+
margin-top: 1rem;
|
385 |
+
}
|
386 |
+
|
387 |
+
/* Stats cards */
|
388 |
+
.stats-container {
|
389 |
+
display: grid;
|
390 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
391 |
+
gap: 1rem;
|
392 |
+
margin-bottom: 1.5rem;
|
393 |
+
}
|
394 |
+
|
395 |
+
.stat-card {
|
396 |
+
background-color: var(--card-color);
|
397 |
+
border-radius: var(--border-radius);
|
398 |
+
padding: 1.25rem;
|
399 |
+
box-shadow: var(--shadow);
|
400 |
+
display: flex;
|
401 |
+
flex-direction: column;
|
402 |
+
gap: 0.5rem;
|
403 |
+
}
|
404 |
+
|
405 |
+
.stat-title {
|
406 |
+
color: var(--text-secondary);
|
407 |
+
font-size: 0.9rem;
|
408 |
+
}
|
409 |
+
|
410 |
+
.stat-value {
|
411 |
+
font-size: 1.5rem;
|
412 |
+
font-weight: 600;
|
413 |
+
color: var(--text-color);
|
414 |
+
}
|
415 |
+
|
416 |
+
.stat-comparison {
|
417 |
+
font-size: 0.85rem;
|
418 |
+
display: flex;
|
419 |
+
align-items: center;
|
420 |
+
gap: 0.25rem;
|
421 |
+
}
|
422 |
+
|
423 |
+
.stat-up {
|
424 |
+
color: var(--secondary-color);
|
425 |
+
}
|
426 |
+
|
427 |
+
.stat-down {
|
428 |
+
color: var(--danger-color);
|
429 |
+
}
|
430 |
+
|
431 |
+
/* Switch */
|
432 |
+
.switch {
|
433 |
+
position: relative;
|
434 |
+
display: inline-block;
|
435 |
+
width: 48px;
|
436 |
+
height: 24px;
|
437 |
+
}
|
438 |
+
|
439 |
+
.switch input {
|
440 |
+
opacity: 0;
|
441 |
+
width: 0;
|
442 |
+
height: 0;
|
443 |
+
}
|
444 |
+
|
445 |
+
.slider {
|
446 |
+
position: absolute;
|
447 |
+
cursor: pointer;
|
448 |
+
top: 0;
|
449 |
+
left: 0;
|
450 |
+
right: 0;
|
451 |
+
bottom: 0;
|
452 |
+
background-color: var(--border-color);
|
453 |
+
-webkit-transition: .4s;
|
454 |
+
transition: .4s;
|
455 |
+
border-radius: 24px;
|
456 |
+
}
|
457 |
+
|
458 |
+
.slider:before {
|
459 |
+
position: absolute;
|
460 |
+
content: "";
|
461 |
+
height: 18px;
|
462 |
+
width: 18px;
|
463 |
+
left: 3px;
|
464 |
+
bottom: 3px;
|
465 |
+
background-color: white;
|
466 |
+
-webkit-transition: .4s;
|
467 |
+
transition: .4s;
|
468 |
+
border-radius: 50%;
|
469 |
+
}
|
470 |
+
|
471 |
+
input:checked + .slider {
|
472 |
+
background-color: var(--primary-color);
|
473 |
+
}
|
474 |
+
|
475 |
+
input:focus + .slider {
|
476 |
+
box-shadow: 0 0 1px var(--primary-color);
|
477 |
+
}
|
478 |
+
|
479 |
+
input:checked + .slider:before {
|
480 |
+
-webkit-transform: translateX(24px);
|
481 |
+
-ms-transform: translateX(24px);
|
482 |
+
transform: translateX(24px);
|
483 |
+
}
|
484 |
+
|
485 |
+
/* Responsive */
|
486 |
+
@media (max-width: 1024px) {
|
487 |
+
.container {
|
488 |
+
flex-direction: column;
|
489 |
+
}
|
490 |
+
.sidebar {
|
491 |
+
width: 100%;
|
492 |
+
height: auto;
|
493 |
+
position: relative;
|
494 |
+
top: 0;
|
495 |
+
border-right: none;
|
496 |
+
border-bottom: 1px solid var(--border-color);
|
497 |
+
}
|
498 |
+
.main-content {
|
499 |
+
padding: 1rem;
|
500 |
+
}
|
501 |
+
}
|
502 |
+
|
503 |
+
@media (max-width: 768px) {
|
504 |
+
.header {
|
505 |
+
padding: 1rem;
|
506 |
+
flex-direction: column;
|
507 |
+
align-items: flex-start;
|
508 |
+
gap: 0.5rem;
|
509 |
+
}
|
510 |
+
.header-actions {
|
511 |
+
width: 100%;
|
512 |
+
justify-content: space-between;
|
513 |
+
}
|
514 |
+
.dashboard-grid {
|
515 |
+
grid-template-columns: 1fr;
|
516 |
+
}
|
517 |
+
.stats-container {
|
518 |
+
grid-template-columns: 1fr 1fr;
|
519 |
+
}
|
520 |
+
}
|
521 |
+
|
522 |
+
@media (max-width: 576px) {
|
523 |
+
.stats-container {
|
524 |
+
grid-template-columns: 1fr;
|
525 |
+
}
|
526 |
+
.camera-controls {
|
527 |
+
flex-wrap: wrap;
|
528 |
+
}
|
529 |
+
.feed-controls {
|
530 |
+
flex-direction: column;
|
531 |
+
gap: 1rem;
|
532 |
+
}
|
533 |
+
}
|
534 |
+
</style>
|
535 |
+
</head>
|
536 |
+
<body>
|
537 |
+
<header class="header">
|
538 |
+
<div class="header-title">
|
539 |
+
<i class="fas fa-shield-alt"></i>
|
540 |
+
<h1>Advanced Security Monitoring System</h1>
|
541 |
+
</div>
|
542 |
+
<div class="header-actions">
|
543 |
+
<div>
|
544 |
+
<i class="fas fa-clock"></i>
|
545 |
+
<span id="current-time"></span>
|
546 |
+
</div>
|
547 |
+
<div>
|
548 |
+
<i class="fas fa-moon"></i>
|
549 |
+
<label class="switch">
|
550 |
+
<input type="checkbox" id="dark-mode-toggle">
|
551 |
+
<span class="slider"></span>
|
552 |
+
</label>
|
553 |
+
</div>
|
554 |
+
</div>
|
555 |
+
</header>
|
556 |
+
|
557 |
+
<div class="container">
|
558 |
+
<div class="sidebar">
|
559 |
+
<div class="stats-container">
|
560 |
+
<div class="stat-card" style="border-left: 4px solid var(--primary-color);">
|
561 |
+
<div class="stat-title">Total Detections</div>
|
562 |
+
<div class="stat-value" id="total-detections">0</div>
|
563 |
+
<div class="stat-comparison stat-up">
|
564 |
+
<i class="fas fa-arrow-up"></i>
|
565 |
+
<span id="detection-rate">Calculating...</span>
|
566 |
+
</div>
|
567 |
+
</div>
|
568 |
+
<div class="stat-card" style="border-left: 4px solid var(--danger-color);">
|
569 |
+
<div class="stat-title">Alerts Today</div>
|
570 |
+
<div class="stat-value" id="alerts-today">0</div>
|
571 |
+
<div class="stat-comparison">
|
572 |
+
<span id="last-alert">No alerts yet</span>
|
573 |
+
</div>
|
574 |
+
</div>
|
575 |
+
</div>
|
576 |
+
|
577 |
+
<div class="card">
|
578 |
+
<div class="section-title">
|
579 |
+
<span>Detected Objects</span>
|
580 |
+
<button id="reset-counts">
|
581 |
+
<i class="fas fa-redo-alt"></i>
|
582 |
+
Reset
|
583 |
+
</button>
|
584 |
+
</div>
|
585 |
+
<ul id="class-list" class="detection-list">
|
586 |
+
<li class="detection-item">Loading data...</li>
|
587 |
+
</ul>
|
588 |
+
</div>
|
589 |
+
|
590 |
+
<div class="card">
|
591 |
+
<div class="section-title">Detection Trend</div>
|
592 |
+
<div id="graph-container"></div>
|
593 |
+
</div>
|
594 |
+
|
595 |
+
<div class="card">
|
596 |
+
<div class="section-title">Recent Alerts</div>
|
597 |
+
<div id="alert-history" class="alert-history">
|
598 |
+
<div class="alert-card">
|
599 |
+
<div class="alert-header">
|
600 |
+
<span>Loading alerts...</span>
|
601 |
+
</div>
|
602 |
+
</div>
|
603 |
+
</div>
|
604 |
+
</div>
|
605 |
+
</div>
|
606 |
+
|
607 |
+
<div class="main-content">
|
608 |
+
<div class="card">
|
609 |
+
<div class="section-title">Live Camera Feed</div>
|
610 |
+
<div class="video-container">
|
611 |
+
<img id="video-feed" class="video-feed" src="{{ url_for('video_feed') }}" alt="Live Video Feed">
|
612 |
+
<div class="status">
|
613 |
+
<span class="status-dot"></span>
|
614 |
+
Live Monitoring
|
615 |
+
</div>
|
616 |
+
</div>
|
617 |
+
<div class="feed-controls">
|
618 |
+
<div class="camera-controls">
|
619 |
+
<button class="control-btn">
|
620 |
+
<i class="fas fa-sync-alt"></i>
|
621 |
+
Refresh
|
622 |
+
</button>
|
623 |
+
<button class="control-btn">
|
624 |
+
<i class="fas fa-camera"></i>
|
625 |
+
Snapshot
|
626 |
+
</button>
|
627 |
+
<button class="control-btn">
|
628 |
+
<i class="fas fa-expand"></i>
|
629 |
+
Fullscreen
|
630 |
+
</button>
|
631 |
+
</div>
|
632 |
+
<button class="control-btn alert-btn">
|
633 |
+
<i class="fas fa-exclamation-triangle"></i>
|
634 |
+
Test Alert
|
635 |
+
</button>
|
636 |
+
</div>
|
637 |
+
<div class="alert-info">
|
638 |
+
<i class="fas fa-bell"></i>
|
639 |
+
<p>Automatic alerts will be sent if security threats are detected. The system will make a phone call and send notifications via Telegram.</p>
|
640 |
+
</div>
|
641 |
+
</div>
|
642 |
+
|
643 |
+
<div class="dashboard-grid">
|
644 |
+
<div class="card">
|
645 |
+
<div class="section-title">Detection Distribution</div>
|
646 |
+
<div id="pie-chart" style="height: 300px;"></div>
|
647 |
+
</div>
|
648 |
+
<div class="card">
|
649 |
+
<div class="section-title">Alert Configuration</div>
|
650 |
+
<form id="alert-config">
|
651 |
+
<div style="margin-bottom: 1rem;">
|
652 |
+
<label style="display: block; margin-bottom: 0.5rem;">Detection Threshold</label>
|
653 |
+
<input type="range" min="0" max="100" value="50" id="detection-threshold" style="width: 100%;">
|
654 |
+
<div style="display: flex; justify-content: space-between; margin-top: 0.25rem;">
|
655 |
+
<span>Low</span>
|
656 |
+
<span>High</span>
|
657 |
+
</div>
|
658 |
+
</div>
|
659 |
+
|
660 |
+
<div style="margin-bottom: 1rem;">
|
661 |
+
<label style="display: block; margin-bottom: 0.5rem;">Alert Interval (seconds)</label>
|
662 |
+
<input type="number" min="30" max="600" value="300" id="alert-interval" style="width: 100%; padding: 0.5rem; border: 1px solid var(--border-color); border-radius: var(--border-radius);">
|
663 |
+
</div>
|
664 |
+
|
665 |
+
<div style="margin-bottom: 1rem;">
|
666 |
+
<label style="display: flex; align-items: center; gap: 0.5rem; margin-bottom: 0.5rem;">
|
667 |
+
<input type="checkbox" id="enable-calls" checked>
|
668 |
+
Enable Phone Calls
|
669 |
+
</label>
|
670 |
+
|
671 |
+
<label style="display: flex; align-items: center; gap: 0.5rem; margin-bottom: 0.5rem;">
|
672 |
+
<input type="checkbox" id="enable-telegram" checked>
|
673 |
+
Enable Telegram
|
674 |
+
</label>
|
675 |
+
|
676 |
+
<label style="display: flex; align-items: center; gap: 0.5rem;">
|
677 |
+
<input type="checkbox" id="enable-sounds" checked>
|
678 |
+
Enable Sound Alerts
|
679 |
+
</label>
|
680 |
+
</div>
|
681 |
+
|
682 |
+
<button type="submit" class="control-btn" style="width: 100%; background-color: var(--primary-color); color: white;">
|
683 |
+
<i class="fas fa-save"></i>
|
684 |
+
Save Configuration
|
685 |
+
</button>
|
686 |
+
</form>
|
687 |
+
</div>
|
688 |
+
</div>
|
689 |
+
</div>
|
690 |
+
</div>
|
691 |
+
|
692 |
+
<!-- Load the Charts.js library -->
|
693 |
+
<script src="https://cdnjs.cloudflare.com/ajax/libs/Chart.js/3.9.1/chart.min.js"></script>
|
694 |
+
|
695 |
+
<script>
|
696 |
+
// Dark mode toggle
|
697 |
+
const darkModeToggle = document.getElementById('dark-mode-toggle');
|
698 |
+
const body = document.body;
|
699 |
+
|
700 |
+
// Check for saved dark mode preference
|
701 |
+
if (localStorage.getItem('darkMode') === 'enabled') {
|
702 |
+
body.classList.add('dark-mode');
|
703 |
+
darkModeToggle.checked = true;
|
704 |
+
}
|
705 |
+
|
706 |
+
darkModeToggle.addEventListener('change', () => {
|
707 |
+
if (darkModeToggle.checked) {
|
708 |
+
body.classList.add('dark-mode');
|
709 |
+
localStorage.setItem('darkMode', 'enabled');
|
710 |
+
} else {
|
711 |
+
body.classList.remove('dark-mode');
|
712 |
+
localStorage.setItem('darkMode', null);
|
713 |
+
}
|
714 |
+
});
|
715 |
+
|
716 |
+
// Current time display
|
717 |
+
function updateTime() {
|
718 |
+
const now = new Date();
|
719 |
+
const timeElement = document.getElementById('current-time');
|
720 |
+
timeElement.textContent = now.toLocaleTimeString();
|
721 |
+
}
|
722 |
+
|
723 |
+
// Update time every second
|
724 |
+
setInterval(updateTime, 1000);
|
725 |
+
updateTime(); // Initial call
|
726 |
+
|
727 |
+
// Tracking detection counts and history
|
728 |
+
let detectionCounts = {};
|
729 |
+
let alertHistory = [];
|
730 |
+
let totalDetections = 0;
|
731 |
+
const detectionData = [];
|
732 |
+
const chartLabels = [];
|
733 |
+
|
734 |
+
// Generate some initial data for the trend chart
|
735 |
+
for (let i = 0; i < 10; i++) {
|
736 |
+
const date = new Date();
|
737 |
+
date.setMinutes(date.getMinutes() - (9 - i));
|
738 |
+
chartLabels.push(date.toLocaleTimeString([], {hour: '2-digit', minute:'2-digit'}));
|
739 |
+
detectionData.push(0);
|
740 |
+
}
|
741 |
+
|
742 |
+
// Create trend chart
|
743 |
+
const trendCtx = document.createElement('canvas');
|
744 |
+
document.getElementById('graph-container').appendChild(trendCtx);
|
745 |
+
|
746 |
+
const trendChart = new Chart(trendCtx, {
|
747 |
+
type: 'line',
|
748 |
+
data: {
|
749 |
+
labels: chartLabels,
|
750 |
+
datasets: [{
|
751 |
+
label: 'Detections',
|
752 |
+
data: detectionData,
|
753 |
+
backgroundColor: 'rgba(59, 130, 246, 0.2)',
|
754 |
+
borderColor: 'rgba(59, 130, 246, 1)',
|
755 |
+
borderWidth: 2,
|
756 |
+
tension: 0.3,
|
757 |
+
fill: true
|
758 |
+
}]
|
759 |
+
},
|
760 |
+
options: {
|
761 |
+
responsive: true,
|
762 |
+
maintainAspectRatio: false,
|
763 |
+
plugins: {
|
764 |
+
legend: {
|
765 |
+
display: false
|
766 |
+
}
|
767 |
+
},
|
768 |
+
scales: {
|
769 |
+
y: {
|
770 |
+
beginAtZero: true,
|
771 |
+
ticks: {
|
772 |
+
stepSize: 1
|
773 |
+
}
|
774 |
+
}
|
775 |
+
}
|
776 |
+
}
|
777 |
+
});
|
778 |
+
|
779 |
+
// Create pie chart for detection distribution
|
780 |
+
const pieCtx = document.createElement('canvas');
|
781 |
+
document.getElementById('pie-chart').appendChild(pieCtx);
|
782 |
+
|
783 |
+
const pieChart = new Chart(pieCtx, {
|
784 |
+
type: 'doughnut',
|
785 |
+
data: {
|
786 |
+
labels: [],
|
787 |
+
datasets: [{
|
788 |
+
data: [],
|
789 |
+
backgroundColor: [
|
790 |
+
'rgba(59, 130, 246, 0.8)',
|
791 |
+
'rgba(16, 185, 129, 0.8)',
|
792 |
+
'rgba(239, 68, 68, 0.8)',
|
793 |
+
'rgba(245, 158, 11, 0.8)',
|
794 |
+
'rgba(139, 92, 246, 0.8)',
|
795 |
+
'rgba(236, 72, 153, 0.8)',
|
796 |
+
'rgba(20, 184, 166, 0.8)',
|
797 |
+
'rgba(249, 115, 22, 0.8)',
|
798 |
+
'rgba(168, 85, 247, 0.8)',
|
799 |
+
'rgba(217, 70, 239, 0.8)'
|
800 |
+
],
|
801 |
+
borderWidth: 1
|
802 |
+
}]
|
803 |
+
},
|
804 |
+
options: {
|
805 |
+
responsive: true,
|
806 |
+
maintainAspectRatio: false,
|
807 |
+
plugins: {
|
808 |
+
legend: {
|
809 |
+
position: 'right'
|
810 |
+
}
|
811 |
+
}
|
812 |
+
}
|
813 |
+
});
|
814 |
+
|
815 |
+
// Function to update the detection list display
|
816 |
+
function updateDetectionList() {
|
817 |
+
const list = document.getElementById('class-list');
|
818 |
+
list.innerHTML = '';
|
819 |
+
|
820 |
+
// Sort by count (highest first)
|
821 |
+
const sortedClasses = Object.keys(detectionCounts).sort((a, b) =>
|
822 |
+
detectionCounts[b] - detectionCounts[a]
|
823 |
+
);
|
824 |
+
|
825 |
+
if (sortedClasses.length === 0) {
|
826 |
+
const listItem = document.createElement('li');
|
827 |
+
listItem.className = 'detection-item';
|
828 |
+
listItem.textContent = 'No detections yet';
|
829 |
+
list.appendChild(listItem);
|
830 |
+
return;
|
831 |
+
}
|
832 |
+
|
833 |
+
sortedClasses.forEach(className => {
|
834 |
+
const count = detectionCounts[className];
|
835 |
+
|
836 |
+
const listItem = document.createElement('li');
|
837 |
+
listItem.className = 'detection-item';
|
838 |
+
|
839 |
+
const label = document.createElement('div');
|
840 |
+
label.className = 'detection-label';
|
841 |
+
|
842 |
+
const icon = document.createElement('div');
|
843 |
+
icon.className = 'detection-icon';
|
844 |
+
|
845 |
+
// Choose appropriate icon based on class name
|
846 |
+
let iconClass = 'fas fa-box';
|
847 |
+
if (className.toLowerCase().includes('person')) {
|
848 |
+
iconClass = 'fas fa-user';
|
849 |
+
} else if (className.toLowerCase().includes('dog') ||
|
850 |
+
className.toLowerCase().includes('cat') ||
|
851 |
+
className.toLowerCase().includes('animal') ||
|
852 |
+
className.toLowerCase().includes('bird')) {
|
853 |
+
iconClass = 'fas fa-paw';
|
854 |
+
} else if (className.toLowerCase().includes('car') ||
|
855 |
+
className.toLowerCase().includes('truck') ||
|
856 |
+
className.toLowerCase().includes('vehicle')) {
|
857 |
+
iconClass = 'fas fa-car';
|
858 |
+
}
|
859 |
+
|
860 |
+
const iconElement = document.createElement('i');
|
861 |
+
iconElement.className = iconClass;
|
862 |
+
icon.appendChild(iconElement);
|
863 |
+
|
864 |
+
const nameSpan = document.createElement('span');
|
865 |
+
nameSpan.textContent = className;
|
866 |
+
|
867 |
+
label.appendChild(icon);
|
868 |
+
label.appendChild(nameSpan);
|
869 |
+
|
870 |
+
const countElement = document.createElement('div');
|
871 |
+
countElement.className = 'detection-count';
|
872 |
+
countElement.textContent = count;
|
873 |
+
|
874 |
+
listItem.appendChild(label);
|
875 |
+
listItem.appendChild(countElement);
|
876 |
+
list.appendChild(listItem);
|
877 |
+
});
|
878 |
+
|
879 |
+
// Update pie chart
|
880 |
+
pieChart.data.labels = sortedClasses;
|
881 |
+
pieChart.data.datasets[0].data = sortedClasses.map(cls => detectionCounts[cls]);
|
882 |
+
pieChart.update();
|
883 |
+
}
|
884 |
+
|
885 |
+
// Function to update alert history display
|
886 |
+
function updateAlertHistory() {
|
887 |
+
const alertContainer = document.getElementById('alert-history');
|
888 |
+
alertContainer.innerHTML = '';
|
889 |
+
|
890 |
+
if (alertHistory.length === 0) {
|
891 |
+
const alertCard = document.createElement('div');
|
892 |
+
alertCard.className = 'alert-card';
|
893 |
+
alertCard.innerHTML = `
|
894 |
+
<div class="alert-header">
|
895 |
+
<span>No alerts yet</span>
|
896 |
+
</div>
|
897 |
+
<p>Alert history will appear here when security events are detected.</p>
|
898 |
+
`;
|
899 |
+
alertContainer.appendChild(alertCard);
|
900 |
+
return;
|
901 |
+
}
|
902 |
+
|
903 |
+
// Display latest alerts first
|
904 |
+
alertHistory.slice().reverse().forEach(alert => {
|
905 |
+
const alertCard = document.createElement('div');
|
906 |
+
alertCard.className = 'alert-card';
|
907 |
+
|
908 |
+
const alertHeader = document.createElement('div');
|
909 |
+
alertHeader.className = 'alert-header';
|
910 |
+
|
911 |
+
const alertTime = document.createElement('span');
|
912 |
+
alertTime.textContent = alert.time;
|
913 |
+
|
914 |
+
alertHeader.appendChild(alertTime);
|
915 |
+
|
916 |
+
const alertDetails = document.createElement('div');
|
917 |
+
alertDetails.className = 'alert-details';
|
918 |
+
|
919 |
+
alert.objects.forEach(obj => {
|
920 |
+
const alertTag = document.createElement('span');
|
921 |
+
alertTag.className = 'alert-tag';
|
922 |
+
alertTag.textContent = obj;
|
923 |
+
alertDetails.appendChild(alertTag);
|
924 |
+
});
|
925 |
+
|
926 |
+
alertCard.appendChild(alertHeader);
|
927 |
+
alertCard.appendChild(alertDetails);
|
928 |
+
alertContainer.appendChild(alertCard);
|
929 |
+
});
|
930 |
+
|
931 |
+
// Update alerts today count
|
932 |
+
document.getElementById('alerts-today').textContent = alertHistory.length;
|
933 |
+
|
934 |
+
// Update last alert time if there are alerts
|
935 |
+
if (alertHistory.length > 0) {
|
936 |
+
const lastAlert = alertHistory[alertHistory.length - 1];
|
937 |
+
document.getElementById('last-alert').textContent = 'Last: ' + lastAlert.time.split(' ')[1];
|
938 |
+
}
|
939 |
+
}
|
940 |
+
|
941 |
+
// Function to fetch detection data
|
942 |
+
async function fetchDetectionData() {
|
943 |
+
try {
|
944 |
+
const response = await fetch('/detection_data');
|
945 |
+
if (response.ok) {
|
946 |
+
const data = await response.json();
|
947 |
+
detectionCounts = data;
|
948 |
+
|
949 |
+
totalDetections = Object.values(detectionCounts).reduce((sum, count) => sum + count, 0);
|
950 |
+
document.getElementById('total-detections').textContent = totalDetections;
|
951 |
+
|
952 |
+
// Add new data point for trend chart
|
953 |
+
const now = new Date();
|
954 |
+
chartLabels.push(now.toLocaleTimeString([], {hour: '2-digit', minute:'2-digit'}));
|
955 |
+
chartLabels.shift();
|
956 |
+
|
957 |
+
// Get the latest minute's detections
|
958 |
+
const latestDetections = Object.values(detectionCounts).reduce((sum, count) => sum + count, 0) -
|
959 |
+
detectionData.reduce((sum, count) => sum + count, 0);
|
960 |
+
|
961 |
+
detectionData.push(latestDetections > 0 ? latestDetections : 0);
|
962 |
+
detectionData.shift();
|
963 |
+
|
964 |
+
trendChart.update();
|
965 |
+
|
966 |
+
// Calculate detection rate
|
967 |
+
const detectionRate = document.getElementById('detection-rate');
|
968 |
+
if (detectionData.slice(-3).some(val => val > 0)) {
|
969 |
+
detectionRate.textContent = 'Active detections';
|
970 |
+
detectionRate.parentElement.className = 'stat-comparison stat-up';
|
971 |
+
detectionRate.previousElementSibling.className = 'fas fa-arrow-up';
|
972 |
+
} else {
|
973 |
+
detectionRate.textContent = 'No recent activity';
|
974 |
+
detectionRate.parentElement.className = 'stat-comparison stat-down';
|
975 |
+
detectionRate.previousElementSibling.className = 'fas fa-arrow-down';
|
976 |
+
}
|
977 |
+
|
978 |
+
updateDetectionList();
|
979 |
+
}
|
980 |
+
} catch (error) {
|
981 |
+
console.error('Error fetching detection data:', error);
|
982 |
+
}
|
983 |
+
}
|
984 |
+
|
985 |
+
// Function to fetch alert history
|
986 |
+
async function fetchAlertHistory() {
|
987 |
+
try {
|
988 |
+
const response = await fetch('/alert_history');
|
989 |
+
if (response.ok) {
|
990 |
+
alertHistory = await response.json();
|
991 |
+
updateAlertHistory();
|
992 |
+
}
|
993 |
+
} catch (error) {
|
994 |
+
console.error('Error fetching alert history:', error);
|
995 |
+
}
|
996 |
+
}
|
997 |
+
|
998 |
+
// Reset detection counts
|
999 |
+
document.getElementById('reset-counts').addEventListener('click', async () => {
|
1000 |
+
try {
|
1001 |
+
const response = await fetch('/reset_counts');
|
1002 |
+
if (response.ok) {
|
1003 |
+
detectionCounts = {};
|
1004 |
+
totalDetections = 0;
|
1005 |
+
document.getElementById('total-detections').textContent = totalDetections;
|
1006 |
+
updateDetectionList();
|
1007 |
+
|
1008 |
+
// Reset trend chart
|
1009 |
+
detectionData.fill(0);
|
1010 |
+
trendChart.update();
|
1011 |
+
|
1012 |
+
// Reset pie chart
|
1013 |
+
pieChart.data.labels = [];
|
1014 |
+
pieChart.data.datasets[0].data = [];
|
1015 |
+
pieChart.update();
|
1016 |
+
}
|
1017 |
+
} catch (error) {
|
1018 |
+
console.error('Error resetting detection counts:', error);
|
1019 |
+
}
|
1020 |
+
});
|
1021 |
+
|
1022 |
+
// Test alert button
|
1023 |
+
document.querySelector('.alert-btn').addEventListener('click', () => {
|
1024 |
+
const testAlert = {
|
1025 |
+
time: new Date().toLocaleString(),
|
1026 |
+
objects: ['Test Alert'],
|
1027 |
+
counts: { 'Test Alert': 1 }
|
1028 |
+
};
|
1029 |
+
alertHistory.push(testAlert);
|
1030 |
+
if (alertHistory.length > 10) {
|
1031 |
+
alertHistory.shift();
|
1032 |
+
}
|
1033 |
+
updateAlertHistory();
|
1034 |
+
});
|
1035 |
+
|
1036 |
+
// Handle alert configuration form submission
|
1037 |
+
document.getElementById('alert-config').addEventListener('submit', (e) => {
|
1038 |
+
e.preventDefault();
|
1039 |
+
const threshold = document.getElementById('detection-threshold').value;
|
1040 |
+
const interval = document.getElementById('alert-interval').value;
|
1041 |
+
const enableCalls = document.getElementById('enable-calls').checked;
|
1042 |
+
const enableTelegram = document.getElementById('enable-telegram').checked;
|
1043 |
+
const enableSounds = document.getElementById('enable-sounds').checked;
|
1044 |
+
|
1045 |
+
// In a real application, this would send the configuration to the server
|
1046 |
+
const config = {
|
1047 |
+
threshold,
|
1048 |
+
interval,
|
1049 |
+
enableCalls,
|
1050 |
+
enableTelegram,
|
1051 |
+
enableSounds
|
1052 |
+
};
|
1053 |
+
|
1054 |
+
console.log('Alert configuration saved:', config);
|
1055 |
+
|
1056 |
+
// Show a confirmation message
|
1057 |
+
alert('Alert configuration saved successfully!');
|
1058 |
+
});
|
1059 |
+
|
1060 |
+
// Refresh data every 5 seconds
|
1061 |
+
setInterval(fetchDetectionData, 5000);
|
1062 |
+
setInterval(fetchAlertHistory, 10000);
|
1063 |
+
|
1064 |
+
// Initial data fetch
|
1065 |
+
fetchDetectionData();
|
1066 |
+
fetchAlertHistory();
|
1067 |
+
</script>
|
1068 |
+
</body>
|
1069 |
+
</html>
|
yolov8n.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f59b3d833e2ff32e194b5bb8e08d211dc7c5bdf144b90d2c8412c47ccfc83b36
|
3 |
+
size 6549796
|